Grafting high content of imidazolium polymer brushes on graphene oxide for nanocomposite membranes with enhanced anion transport
Type
ArticleAuthors
Wang, JiansheChen, Huiling
Ma, Yingying
Bai, Huijuan
Shi, Benbing
Hou, Chunli
Wang, Jingtao
Li, Yifan
Date
2020-01Embargo End Date
2021-12-13Submitted Date
2019-09-24Permanent link to this record
http://hdl.handle.net/10754/667229
Metadata
Show full item recordAbstract
Polymer functionalized nanoparticles have attracted burgeoning interests in designing and fabricating novel nanocomposite membranes for fast transport of ions or small molecules. Herein, imidazolium polymer coated graphene oxides (AImGOs), bearing different length of polymer brushes, are synthesized via ATRP technique, and thus a very high weight percentage of imidazolium polymer brushes on GO (up to 89.5%) is acquired, corresponding to a high IEC value up to 65.5 mmol g−1. The as-synthesized AImGOs are then dispersed into poly(vinyl alcohol) (PVA) to prepare nanocomposite membranes. The polymer brushes coated on AImGOs render better interfacial compatibility and filler dispersity. The large specific surface area and high aspect ratio of GO contributes to the enhancement of swelling resistance and mechanical stability of membranes. More importantly, the imidazolium polymer brushes on AImGOs endow the membrane with efficient OH– conduction ability due to the high loading of OH– hopping sites, the flexible chain, and the intrinsic large surface area of GO, demonstrating that efficient OH−-hopping pathways are constructed along the interface between PVA matrix and AImGO. By lengthening the polymer brushes, increasing AImGO content, and adopting appropriate types of imidazolium cations, a remarkable increment of OH– conductivity are observed. To be noted, long polymer brushes quaternized with ethyl chloroformate yield zwitterion type functionality, entitling the highest OH– conductivity of 31.6 mS cm−1 at 30 °C (100% RH).Citation
Wang, J., Chen, H., Ma, Y., Bai, H., Shi, B., Hou, C., … Li, Y. (2020). Grafting high content of imidazolium polymer brushes on graphene oxide for nanocomposite membranes with enhanced anion transport. Reactive and Functional Polymers, 146, 104447. doi:10.1016/j.reactfunctpolym.2019.104447Sponsors
We gratefully acknowledge the financial supports from National Natural Science Foundation of China (21878277, 21506196, 21576244 and 21476215), Natural Science Foundation of Henan province (182300410268), China Postdoctoral Science Foundation (2015M570633 and 2017T100538), and Excellent Youth Development Foundation of Zhengzhou University (1521324002). We also gratefully acknowledge the financial supports from China Scholarship Council and King Abdullah University of Science and Technology, and the instrument support from Center of Advanced Analysis & Computational Science, Zhengzhou University.Publisher
Elsevier BVJournal
Reactive and Functional PolymersAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S1381514819310107ae974a485f413a2113503eed53cd6c53
10.1016/j.reactfunctpolym.2019.104447