• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Grafting high content of imidazolium polymer brushes on graphene oxide for nanocomposite membranes with enhanced anion transport

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Jianshe
    Chen, Huiling
    Ma, Yingying
    Bai, Huijuan
    Shi, Benbing
    Hou, Chunli
    Wang, Jingtao
    Li, Yifan
    Date
    2020-01
    Embargo End Date
    2021-12-13
    Submitted Date
    2019-09-24
    Permanent link to this record
    http://hdl.handle.net/10754/667229
    
    Metadata
    Show full item record
    Abstract
    Polymer functionalized nanoparticles have attracted burgeoning interests in designing and fabricating novel nanocomposite membranes for fast transport of ions or small molecules. Herein, imidazolium polymer coated graphene oxides (AImGOs), bearing different length of polymer brushes, are synthesized via ATRP technique, and thus a very high weight percentage of imidazolium polymer brushes on GO (up to 89.5%) is acquired, corresponding to a high IEC value up to 65.5 mmol g−1. The as-synthesized AImGOs are then dispersed into poly(vinyl alcohol) (PVA) to prepare nanocomposite membranes. The polymer brushes coated on AImGOs render better interfacial compatibility and filler dispersity. The large specific surface area and high aspect ratio of GO contributes to the enhancement of swelling resistance and mechanical stability of membranes. More importantly, the imidazolium polymer brushes on AImGOs endow the membrane with efficient OH– conduction ability due to the high loading of OH– hopping sites, the flexible chain, and the intrinsic large surface area of GO, demonstrating that efficient OH−-hopping pathways are constructed along the interface between PVA matrix and AImGO. By lengthening the polymer brushes, increasing AImGO content, and adopting appropriate types of imidazolium cations, a remarkable increment of OH– conductivity are observed. To be noted, long polymer brushes quaternized with ethyl chloroformate yield zwitterion type functionality, entitling the highest OH– conductivity of 31.6 mS cm−1 at 30 °C (100% RH).
    Citation
    Wang, J., Chen, H., Ma, Y., Bai, H., Shi, B., Hou, C., … Li, Y. (2020). Grafting high content of imidazolium polymer brushes on graphene oxide for nanocomposite membranes with enhanced anion transport. Reactive and Functional Polymers, 146, 104447. doi:10.1016/j.reactfunctpolym.2019.104447
    Sponsors
    We gratefully acknowledge the financial supports from National Natural Science Foundation of China (21878277, 21506196, 21576244 and 21476215), Natural Science Foundation of Henan province (182300410268), China Postdoctoral Science Foundation (2015M570633 and 2017T100538), and Excellent Youth Development Foundation of Zhengzhou University (1521324002). We also gratefully acknowledge the financial supports from China Scholarship Council and King Abdullah University of Science and Technology, and the instrument support from Center of Advanced Analysis & Computational Science, Zhengzhou University.
    Publisher
    Elsevier BV
    Journal
    Reactive and Functional Polymers
    DOI
    10.1016/j.reactfunctpolym.2019.104447
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S1381514819310107
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.reactfunctpolym.2019.104447
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.