Show simple item record

dc.contributor.authorRivera-García, Diego
dc.contributor.authorGarcía-Escudero, Luis Angel
dc.contributor.authorMayo-Iscar, Agustín
dc.contributor.authorOrtega, Joaquin
dc.date.accessioned2021-02-03T06:59:44Z
dc.date.available2021-02-03T06:59:44Z
dc.date.issued2020-12-18
dc.identifier.citationRivera-García, D., García-Escudero, L. A., Mayo-Iscar, A., & Ortega, J. (2020). Stationary Intervals for Random Waves by Functional Clustering of Spectral Densities. Volume 6B: Ocean Engineering. doi:10.1115/omae2020-19171
dc.identifier.isbn9780791884386
dc.identifier.doi10.1115/omae2020-19171
dc.identifier.urihttp://hdl.handle.net/10754/667201
dc.description.abstractA new time series clustering procedure, based on Functional Data Analysis techniques applied to spectral densities, is employed in this work for the detection of stationary intervals in random waves. Long records of wave data are divided into 30- minute or one-hour segments and the spectral density of each interval is estimated by one of the standard methods available. These spectra are regarded as the main characteristic of each 30-minute time series for clustering purposes. The spectra are considered as functional data and, after representation on a spline basis, they are clustered by a mixtures model method based on a truncated Karhunen-Loéve expansion as an approximation to the density function for functional data. The clustering method uses trimming techniques and restrictions on the scatter within groups to reduce the effect of outliers and to prevent the detection of spurious clusters. Simulation examples show that the procedure works well in the presence of noise and the restrictions on the scatter are effective in avoiding the detection of false clusters. Consecutive time intervals clustered together are considered as a single stationary segment of the time series. An application to real wave data is presented.
dc.description.sponsorshipThis work was supported by the Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17 and VA002G18.
dc.publisherASME International
dc.relation.urlhttps://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2020/84386/Virtual,%20Online/1092964
dc.rightsArchived with thanks to American Society of Mechanical Engineers
dc.subjectTime Series clustering
dc.subjectSpectral analysis
dc.subjectstationary intervals
dc.titleStationary intervals for random waves by functional clustering of spectral densities
dc.typeConference Paper
dc.contributor.departmentKAUST, Thuwal, Saudi Arabia
dc.conference.date2020-08-03 to 2020-08-07
dc.conference.nameASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2020
dc.conference.locationVirtual, Online
dc.eprint.versionPost-print
dc.contributor.institutionCIMAT, Guanajuato, Mexico
dc.contributor.institutionUniversidad de Valladolid, Valladolid, Spain
dc.identifier.volume6B-2020
kaust.personOrtega, Joaquin
dc.identifier.eid2-s2.0-85099382350


This item appears in the following Collection(s)

Show simple item record