Stationary intervals for random waves by functional clustering of spectral densities
Type
Conference PaperKAUST Department
KAUST, Thuwal, Saudi ArabiaDate
2020-12-18Permanent link to this record
http://hdl.handle.net/10754/667201
Metadata
Show full item recordAbstract
A new time series clustering procedure, based on Functional Data Analysis techniques applied to spectral densities, is employed in this work for the detection of stationary intervals in random waves. Long records of wave data are divided into 30- minute or one-hour segments and the spectral density of each interval is estimated by one of the standard methods available. These spectra are regarded as the main characteristic of each 30-minute time series for clustering purposes. The spectra are considered as functional data and, after representation on a spline basis, they are clustered by a mixtures model method based on a truncated Karhunen-Loéve expansion as an approximation to the density function for functional data. The clustering method uses trimming techniques and restrictions on the scatter within groups to reduce the effect of outliers and to prevent the detection of spurious clusters. Simulation examples show that the procedure works well in the presence of noise and the restrictions on the scatter are effective in avoiding the detection of false clusters. Consecutive time intervals clustered together are considered as a single stationary segment of the time series. An application to real wave data is presented.Citation
Rivera-García, D., García-Escudero, L. A., Mayo-Iscar, A., & Ortega, J. (2020). Stationary Intervals for Random Waves by Functional Clustering of Spectral Densities. Volume 6B: Ocean Engineering. doi:10.1115/omae2020-19171Sponsors
This work was supported by the Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17 and VA002G18.Publisher
ASME InternationalConference/Event name
ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2020ISBN
9780791884386Additional Links
https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2020/84386/Virtual,%20Online/1092964ae974a485f413a2113503eed53cd6c53
10.1115/omae2020-19171