Interfacial Oxide Formation Limits the Photovoltage of α-SnWO4/NiOx Photoanodes Prepared by Pulsed Laser Deposition
Type
ArticleAuthors
Schnell, PatrickKölbach, Moritz
Schleuning, Markus
Obata, Keisuke
Irani, Rowshanak
Ahmet, Ibbi Y.
Harb, Moussab

Starr, David E.
van de Krol, Roel
Abdi, Fatwa F.

KAUST Department
KAUST Catalysis Center (KCC)Date
2021-01-14Submitted Date
2020-10-06Permanent link to this record
http://hdl.handle.net/10754/667161
Metadata
Show full item recordAbstract
α-SnWO4 is a promising metal oxide photoanode material for direct photoelectrochemical water splitting. With a band gap of 1.9 eV, it ideally matches the requirements as a top absorber in a tandem device theoretically capable of achieving solar-to-hydrogen (STH) efficiencies above 20%. It suffers from photoelectrochemical instability, but NiOx protection layers have been shown to help overcome this limitation. At the same time, however, such protection layers seem to reduce the photovoltage that can be generated at the solid/electrolyte junction. In this study, an extensive analysis of the α-SnWO4/NiOx interface is performed by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). NiOx deposition introduces a favorable upwards band bending, but also oxidizes Sn2+ to Sn4+ at the interface. By combining the HAXPES data with open circuit potential (OCP) analysis, density functional theory (DFT) calculations, and Monte Carlo-based photoemission spectra simulation, the presence of a thin oxide layer at the α-SnWO4/NiOx interface is suggested and shown to be responsible for the limited photovoltage. Based on this new-found understanding, suitable mitigation strategies can be proposed. Overall, this study demonstrates the complex nature of solid-state interfaces in multi-layer photoelectrodes, which needs to be unraveled to design efficient heterostructured photoelectrodes for solar water splitting.Citation
Schnell, P., Kölbach, M., Schleuning, M., Obata, K., Irani, R., Ahmet, I. Y., … Abdi, F. F. (2021). Interfacial Oxide Formation Limits the Photovoltage of α-SnWO 4 /NiO x Photoanodes Prepared by Pulsed Laser Deposition. Advanced Energy Materials, 2003183. doi:10.1002/aenm.202003183Sponsors
The authors acknowledge financial support for this work from the Helmholtz International Research School “Hybrid Integrated Systems for Conversion of Solar Energy” (HI-SCORE), an initiative co-funded by the Initiative and Networking Fund of the Helmholtz Association. Part of the work was funded by the Volkswagen Foundation. They would also like to thank Roberto Felix Duarte and Regan Wilks for the access and technical assistance to the HiKE endstation, KMC-1 beamline at the BESSY-II synchrotron facility, as well as Karsten Harbauer and Ronen Gottesman for supporting the PLD experiments. M.H. thanks the KAUST Supercomputing Laboratory for the needed computational resources. The authors thank Ulrike Bloeck for recording the TEM images. Open access funding enabled and organized by Projekt DEAL.Publisher
WileyJournal
Advanced Energy MaterialsAdditional Links
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202003183ae974a485f413a2113503eed53cd6c53
10.1002/aenm.202003183
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.