Show simple item record

dc.contributor.authorGong, Lipeng
dc.contributor.authorZhang, Cheng
dc.contributor.authorNie, Anmin
dc.contributor.authorLin, Changqing
dc.contributor.authorZhang, Hao
dc.contributor.authorGao, Chaofeng
dc.contributor.authorWang, Meng
dc.contributor.authorZhang, Xi
dc.contributor.authorHan, Nannan
dc.contributor.authorSu, Huimin
dc.contributor.authorLin, Chen
dc.contributor.authorJin, Yizheng
dc.contributor.authorZhang, Chenhui
dc.contributor.authorZhang, Xixiang
dc.contributor.authorDai, Jun-Feng
dc.contributor.authorCheng, Yingchun
dc.contributor.authorHuang, Wei
dc.date.accessioned2021-01-31T08:05:51Z
dc.date.available2021-01-31T08:05:51Z
dc.date.issued2021-01-28
dc.date.submitted2020-11-19
dc.identifier.citationGong, L., Zhang, C., Nie, A., Lin, C., Zhang, H., Gao, C., … Huang, W. (2021). Epitaxial growth of large-grain-size ferromagnetic monolayer CrI3 for valley Zeeman splitting enhancement. Nanoscale. doi:10.1039/d0nr08248a
dc.identifier.issn2040-3364
dc.identifier.pmid33506851
dc.identifier.doi10.1039/d0nr08248a
dc.identifier.urihttp://hdl.handle.net/10754/667113
dc.description.abstractTwo-dimensional (2D) magnetic CrI3 has received considerable research attention because of its intrinsic features, including insulation, Ising ferromagnetism, and stacking-order-dependent magnetism, as well as potential in spintronic applications. However, the current strategy for the production of ambient-unstable CrI3 thin layer is limited to mechanical exfoliation, which normally suffers from uncontrollable layer thickness, small size, and low yet unpredictable yield. Here, via a confined vapor epitaxy (CVE) method, we demonstrate the mass production of flower-like CrI3 monolayers on mica. Interestingly, we discovered the crucial role of K ions on the mica surface in determining the morphology of monolayer CrI3, reacting with precursors to form a KIx buffer layer. Meanwhile, the transport agent affects the thickness and size of the as-grown CrI3. Moreover, the Curie temperature of CrI3 is greatly affected by the interaction between CrI3 and the substrate. The monolayer CrI3 on mica could act as a magnetic substrate for valley Zeeman splitting enhancement of WSe2. We reckon our work represents a major advancement in the mass production of monolayer 2D CrI3 and anticipate that our growth strategy may be extended to other transition metal halides.
dc.description.sponsorshipY. C. acknowledges the support from the National Natural Science Foundation of China (91833302) and the Fundamental Research Funds for the Central Universities. J. F. acknowledges the support from the National Natural Science Foundation of China (11974159). H. M. acknowledges the support from the National Natural Science Foundation of China (11604139). W. H. acknowledges the support from the National Natural Science Foundation of China (61935017) and Projects of International Cooperation and Exchanges NSFC (51811530018). N. N. H. acknowledges the support from the National Natural Science Foundation of China (11904288). C. H. Z and X. X. Z. acknowledges the support from King Abdullah University of Science & Technology (KAUST) under award numbers OSR-2018-CRG7-3717. For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://xlink.rsc.org/?DOI=D0NR08248A
dc.rightsArchived with thanks to Nanoscale
dc.titleEpitaxial growth of large-grain-size ferromagnetic monolayer CrI$_{3}$ for valley Zeeman splitting enhancement.
dc.typeArticle
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNanoscale
dc.rights.embargodate2022-01-28
dc.eprint.versionPost-print
dc.contributor.institutionKey Laboratory of Flexible Electronics & Institute of Advanced Materials
dc.contributor.institutionJiangsu National Synergetic Innovation Center for Advanced Materials
dc.contributor.institutionNanjing Tech University
dc.contributor.institutionNanjing 211816
dc.contributor.institutionChina
dc.contributor.institutionShenzhen Institute for Quantum Science and Engineering
dc.contributor.institutionand Department of Physics
dc.contributor.institutionSouthern University of Science and Technology
dc.contributor.institutionShenzhen 518055
dc.contributor.institutionCenter for High Pressure Science
dc.contributor.institutionState Key Lab of Metastable Materials Science and Technology
dc.contributor.institutionYanshan University
dc.contributor.institutionQinhuangdao 066004
dc.contributor.institutionFrontiers Science Center for Flexible Electronics
dc.contributor.institutionXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering
dc.contributor.institutionNorthwestern Polytechnical University
dc.contributor.institutionXi'an 710072
dc.contributor.institutionState Key Laboratory of Silicon Materials
dc.contributor.institutionCentre for Chemistry of High-Performance & Novel Materials
dc.contributor.institutionSchool of Materials Science and Engineering
dc.contributor.institutionZhejiang University
dc.contributor.institutionHangzhou 310027
dc.contributor.institutionPhysical Science and Engineering Division (PSE)
dc.contributor.institutionSaudi Arabia
kaust.personZhang, Chenhui
kaust.personZhang, Chenhui
kaust.personZhang, Xixiang
kaust.personZhang, Xixiang
kaust.grant.numberOSR-2018-CRG7-3717
dc.date.accepted2021-01-04
refterms.dateFOA2021-02-01T06:21:19Z
kaust.acknowledged.supportUnitOSR
kaust.acknowledged.supportUnitSupercomputing Laboratory


Files in this item

Thumbnail
Name:
epitaxial_Nanoscale (1).pdf
Size:
812.6Kb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-01-28

This item appears in the following Collection(s)

Show simple item record