Show simple item record

dc.contributor.authorPei, Xinyan
dc.contributor.authorElhagrasy, Ayman.M
dc.contributor.authorJiang, Long
dc.contributor.authorAlAhmadi, Kamal M.
dc.contributor.authorSaxena, Saumitra
dc.contributor.authorRoberts, William L.
dc.date.accessioned2021-01-28T11:07:33Z
dc.date.available2021-01-28T11:07:33Z
dc.date.issued2021-03-31
dc.date.submitted2020-04-27
dc.identifier.citationPei, X., Elhagrasy, A. ., Jiang, L., AlAhmadi, K. M., Saxena, S., & Roberts, W. (2021). Heavy Fuel Oil Combustion Characteristics Evaluation in Various Swirling Flow Conditions. Journal of Engineering for Gas Turbines and Power. doi:10.1115/1.4049774
dc.identifier.issn0742-4795
dc.identifier.issn1528-8919
dc.identifier.doi10.1115/1.4049774
dc.identifier.urihttp://hdl.handle.net/10754/667081
dc.description.abstractAbstract Heavy fuel oil (HFO) is an economical fuel alternative for power generation as its low production cost and high energy density. However, its incomplete combustion induced by the presence of long-chain petroleum molecules in the fuel results in high levels of emissions. Here, we investigate the influence of the swirl flow on the combustion and emissions of a spray HFO swirling flame. To this end, HFO is sprayed into a hot swirling air, using an air-blast nozzle. The flame blowout limits are tested under different swirl flows. An investigation of the in-flame temperature fields, gaseous emissions including CO, CO2, O2, NOX, SOX, UHC (Unburned Hydrocarbon) and solid particles in the form of cenospheres are used to quantify the performance of the HFO combustion. The influence of the HFO swirling flame is tested under different conditions of global equivalence ratio, swirling number, and tangential and axial airflow rates. A comparison of two different flame regimes that fuel-jet dominate flame and air-driven vortex flows are investigated and compared in various swirling flow conditions. The results show that the tangent air is the primary factor for preheating and evaporating the fuel, thus defining the flame operating regimes.
dc.description.sponsorshipThe research reported in this publication was supported by Saudi Electricity Company under Grant Agreement number RGC/3/2741-01-01 and by King Abdullah University of Science and Technology (KAUST).
dc.publisherASME International
dc.relation.urlhttps://asmedigitalcollection.asme.org/gasturbinespower/article/doi/10.1115/1.4049774/1096337/Heavy-Fuel-Oil-Combustion-Characteristics
dc.titleHeavy Fuel Oil Combustion Characteristics Evaluation in Various Swirling Flow Conditions
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentClean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; Faculty of Engineering Mataria. Helwan University, Cairo, 11795, Egypt
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentResearch and Development Department, Saudi Electricity Company, Thuwal, 23955-6900, Saudi Arabia
dc.contributor.departmenthigh-pressure combustion (HPC) Research Group
dc.identifier.journalJournal of Engineering for Gas Turbines and Power
dc.eprint.versionPost-print
dc.contributor.institutionInstitute for Aero Engine, Tsinghua University, Beijing, 100084, China
kaust.personElhagrasy, Ayman.M
kaust.personJiang, Long
kaust.personAlAhmadi, Kamal M.
kaust.personSaxena, Saumitra
kaust.personRoberts, William L.
dc.date.accepted2020-11-01
refterms.dateFOA2021-01-28T11:12:42Z
dc.date.published-online2021-03-31
dc.date.published-print2021-07-01


Files in this item

Thumbnail
Name:
heavy fuel oil.pdf
Size:
1.318Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record