Heavy Fuel Oil Combustion Characteristics Evaluation in Various Swirling Flow Conditions
Type
ArticleAuthors
Pei, XinyanElhagrasy, Ayman.M
Jiang, Long
AlAhmadi, Kamal M.
Saxena, Saumitra
Roberts, William L.

KAUST Department
Clean Combustion Research CenterClean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; Faculty of Engineering Mataria. Helwan University, Cairo, 11795, Egypt
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Research and Development Department, Saudi Electricity Company, Thuwal, 23955-6900, Saudi Arabia
high-pressure combustion (HPC) Research Group
Date
2021-03-31Online Publication Date
2021-03-31Print Publication Date
2021-07-01Submitted Date
2020-04-27Permanent link to this record
http://hdl.handle.net/10754/667081
Metadata
Show full item recordAbstract
Heavy fuel oil (HFO) is an economical fuel alternative for power generation as its low production cost and high energy density. However, its incomplete combustion induced by the presence of long-chain petroleum molecules in the fuel results in high levels of emissions. Here, we investigate the influence of the swirl flow on the combustion and emissions of a spray HFO swirling flame. To this end, HFO is sprayed into a hot swirling air, using an air-blast nozzle. The flame blowout limits are tested under different swirl flows. An investigation of the in-flame temperature fields, gaseous emissions including CO, CO2, O2, NOX, SOX, UHC (Unburned Hydrocarbon) and solid particles in the form of cenospheres are used to quantify the performance of the HFO combustion. The influence of the HFO swirling flame is tested under different conditions of global equivalence ratio, swirling number, and tangential and axial airflow rates. A comparison of two different flame regimes that fuel-jet dominate flame and air-driven vortex flows are investigated and compared in various swirling flow conditions. The results show that the tangent air is the primary factor for preheating and evaporating the fuel, thus defining the flame operating regimes.Citation
Pei, X., Elhagrasy, A. ., Jiang, L., AlAhmadi, K. M., Saxena, S., & Roberts, W. (2021). Heavy Fuel Oil Combustion Characteristics Evaluation in Various Swirling Flow Conditions. Journal of Engineering for Gas Turbines and Power. doi:10.1115/1.4049774Sponsors
The research reported in this publication was supported by Saudi Electricity Company under Grant Agreement number RGC/3/2741-01-01 and by King Abdullah University of Science and Technology (KAUST).Publisher
ASME InternationalAdditional Links
https://asmedigitalcollection.asme.org/gasturbinespower/article/doi/10.1115/1.4049774/1096337/Heavy-Fuel-Oil-Combustion-Characteristicsae974a485f413a2113503eed53cd6c53
10.1115/1.4049774