Show simple item record

dc.contributor.authorde Bastiani, Michele
dc.contributor.authorMirabelli, Alessandro J.
dc.contributor.authorHou, Yi
dc.contributor.authorGota, Fabrizio
dc.contributor.authorAydin, Erkan
dc.contributor.authorAllen, Thomas
dc.contributor.authorTroughton, Joel
dc.contributor.authorSubbiah, Anand Selvin
dc.contributor.authorIsikgor, Furkan Halis
dc.contributor.authorLiu, Jiang
dc.contributor.authorXu, Lujia
dc.contributor.authorChen, Bin
dc.contributor.authorVan Kerschaver, Emmanuel
dc.contributor.authorBaran, Derya
dc.contributor.authorFraboni, Beatrice
dc.contributor.authorSalvador, Michael F.
dc.contributor.authorPaetzold, Ulrich W.
dc.contributor.authorSargent, E.
dc.contributor.authorDe Wolf, Stefaan
dc.date.accessioned2021-01-12T12:37:57Z
dc.date.available2021-01-12T12:37:57Z
dc.date.issued2021-01-11
dc.date.submitted2020-03-19
dc.identifier.citationDe Bastiani, M., Mirabelli, A. J., Hou, Y., Gota, F., Aydin, E., Allen, T. G., … De Wolf, S. (2021). Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy. doi:10.1038/s41560-020-00756-8
dc.identifier.issn2058-7546
dc.identifier.doi10.1038/s41560-020-00756-8
dc.identifier.urihttp://hdl.handle.net/10754/666878
dc.description.abstractBifacial monolithic perovskite/silicon tandem solar cells exploit albedo—the diffuse reflected light from the environment—to increase their performance above that of monofacial perovskite/silicon tandems. Here we report bifacial tandems with certified power conversion efficiencies >25% under monofacial AM1.5G 1 sun illumination that reach power-generation densities as high as ~26 mW cm–2 under outdoor testing. We investigated the perovskite bandgap required to attain optimized current matching under a variety of realistic illumination and albedo conditions. We then compared the properties of these bifacial tandems exposed to different albedos and provide energy yield calculations for two locations with different environmental conditions. Finally, we present a comparison of outdoor test fields of monofacial and bifacial perovskite/silicon tandems to demonstrate the added value of tandem bifaciality for locations with albedos of practical relevance.
dc.description.sponsorshipThis work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2018-CPF-3669.02, KAUST OSR-CARF URF/1/ 3079-33-01, KAUST OSR-CRG RF/1/3383, KAUST OSR-CRG2018-3737 and IED OSR-2019-4208. This work was supported in part by the US Department of the Navy, Office of Naval Research (grant award no. N00014-20-1-2572). The financial support of the German Federal Ministry for Economic Affairs and Energy (CAPITANO, funding code 03EE1038B) and the Initiating and Networking funding of the Helmholtz Association (HYIG to U.W.P. (funding code VH-NG1148), PEROSEED (funding code ZT-0024) and the Science and Technology of Nanostructures Research Program) is acknowledged. Furthermore, we are grateful for the help and support of A. Mertens and A. Rozalier from KIT in setting up the outdoor measurements in Karslruhe as well as M. Langenhorst, R. Schamger and J. Lehr for developing earlier versions of the energy-yield software. We acknowledge the support of ABET Technologies and Newport. We thank TUV Rheinland Group, Germany, for providing solar spectra from TUV’s outdoor test field on the KAUST campus, Thuwal, Saudi Arabia. We are grateful for the support of J. L. Mynar and the KAUST Corelab, and for the fruitful discussions with A. H. Balawi.
dc.publisherSpringer Science and Business Media LLC
dc.relation.urlhttp://www.nature.com/articles/s41560-020-00756-8
dc.rightsArchived with thanks to Nature Energy
dc.titleEfficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentKAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
dc.contributor.departmentMaterial Science and Engineering Program
dc.identifier.journalNature Energy
dc.rights.embargodate2021-07-11
dc.eprint.versionPost-print
dc.contributor.institutionPresent address: Department of Physics and Astronomy, Alma Mater Studiorum—University of Bologna, Bologna, Italy.
dc.contributor.institutionDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
dc.contributor.institutionInstitute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein- Leopoldshafen, Germany.
dc.contributor.institutionDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy.
dc.contributor.institutionLight Technology Institute Karlsruhe Institute of Technology, Karlsruhe, Germany.
kaust.personde Bastiani, Michele
kaust.personMirabelli, Alessandro J.
kaust.personAydin, Erkan
kaust.personAllen, Thomas
kaust.personTroughton, Joel
kaust.personSubbiah, Anand Selvin
kaust.personIsikgor, Furkan Halis
kaust.personLiu, Jiang
kaust.personXu, Lujia
kaust.personVan Kerschaver, Emmanuel
kaust.personBaran, Derya
kaust.personSalvador, Michael F.
kaust.personDe Wolf, Stefaan
kaust.grant.numberOSR-CRG2018-3737
dc.date.accepted2020-11-30
refterms.dateFOA2021-01-13T06:50:52Z
kaust.acknowledged.supportUnitOffice of Naval Research
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
41560_2020_756_OnlinePDF(2).PDF
Size:
2.017Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2021-07-11

This item appears in the following Collection(s)

Show simple item record