Exergy loss characteristics of DME/air and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: A DNS study
Name:
Zhang et al. - 2020 - Exergy loss characteristics of DMEair and ethanol.pdf
Size:
4.625Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-12-29
Type
ArticleKAUST Department
Clean Combustion Research CenterComputational Reacting Flow Laboratory (CRFL)
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2020-12-29Embargo End Date
2022-12-29Submitted Date
2020-07-20Permanent link to this record
http://hdl.handle.net/10754/666865
Metadata
Show full item recordAbstract
The exergy loss characteristics of combustion processes under homogeneous-charge compression ignition (HCCI) and stratified-charge compression ignition (SCCI) conditions are numerically investigated by analyzing two-dimensional (2-D) direct numerical simulation (DNS) data. Two fuels, dimethyl ether and ethanol, together with the initial conditions of different mean temperatures, and levels of temperature and concentration fluctuations relevant to HCCI/SCCI conditions were investigated. It is found that the prevalent deflagration mode significantly decreases the maximum exergy loss rates and spreads out the exergy loss rate for all the cases regardless of fuel types, temperature regimes, and temperature and/or concentration fluctuations. The primary irreversible sources of exergy loss are also identified. The chemical reaction is found to be the primary contributor to the total exergy loss, followed by heat conduction and mass diffusion, regardless of the fluctuation levels. It is also found that the relative change of exergy loss due to chemical reactions, ELchemrel, correlates strongly with the heat release fraction by deflagration. The maximum ELchemrel is found to be less than 10%. Chemical pathway analysis reveals that the exergy loss induced by low-temperature reactions, represented by the decomposition of hydroperoxy–alkylperoxy and the H-abstraction reactions of the fuel molecule, is much lower under the SCCI conditions than that under the HCCI conditions. Generally, the dominant reactions contributing to the exergy loss in the high-temperature regime are nearly identical for the HCCI and SCCI combustion. Key reactions, including the H2O2 loop reactions, the reactions of the H2–O2 mechanism, and the conversion reaction of CO to CO2, CO+OH=CO2+H, are found to contribute more than 50% of the total exergy loss. Due to locally higher reactivities by temperature and concentration fluctuations inducing deflagration dominance, these reactions occur at a relatively higher temperature (1600 K–1900 K) compared with the homogeneous zero-dimensional cases (∼1400 K), resulting in a net reduction in exergy loss.Citation
Zhang, J., Luong, M. B., Pérez, F. E. H., Han, D., Im, H. G., & Huang, Z. (2021). Exergy loss characteristics of DME/air and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: A DNS study. Combustion and Flame, 226, 334–346. doi:10.1016/j.combustflame.2020.12.028Sponsors
The authors would like to thank Prof. Tianfeng Lu for providing the code to leverage between the reduced mechanism and the skeletal mechanism. This work was sponsored by the research funding from King Abdullah University of Science and Technology, and National Natural Science Foundation of China (Grant Nos. 51861135303 and 51776124). This research used the computational resources of the KAUST Supercomputing Laboratory (KSL).Publisher
Elsevier BVJournal
Combustion and FlameAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S0010218020305770ae974a485f413a2113503eed53cd6c53
10.1016/j.combustflame.2020.12.028