Notice

This is not the latest version of this item. The latest version can be found at: https://repository.kaust.edu.sa/handle/10754/666853

Show simple item record

dc.contributor.authorHuo, Xiaokai
dc.contributor.authorLiu, Hailiang
dc.contributor.authorTzavaras, Athanasios
dc.contributor.authorWang, Shuaikun
dc.date.accessioned2021-01-10T11:51:06Z
dc.date.available2021-01-10T11:51:06Z
dc.date.issued2020-05-16
dc.identifier.urihttp://hdl.handle.net/10754/666853.1
dc.description.abstractWe develop a new finite difference scheme for the Maxwell-Stefan diffusion system. The scheme is conservative, energy stable and positivity-preserving. These nice properties stem from a variational structure and are proved by reformulating the finite difference scheme into an equivalent optimization problem. The solution to the scheme emerges as the minimizer of the optimization problem, and as a consequence energy stability and positivity-preserving properties are obtained.
dc.publisherarXiv
dc.relation.urlhttps://arxiv.org/pdf/2005.08062
dc.rightsArchived with thanks to arXiv
dc.titleAn energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system
dc.typePreprint
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.eprint.versionPre-print
dc.contributor.institutionIowa State University, Mathematics Department, Ames, IA 500
dc.identifier.arxivid2005.08062
kaust.personHuo, Xiaokai
kaust.personTzavaras, Athanasios
kaust.personWang, Shuaikun
refterms.dateFOA2021-01-10T11:52:03Z


Files in this item

Thumbnail
Name:
2005.08062.pdf
Size:
2.256Mb
Format:
PDF
Description:
pre-print

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version