• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Autoignition of low to high octane gasolines

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Farooq, Aamir cc
    Giri, Binod
    AlAbbad, Mohammed A. cc
    Sarathy, Mani cc
    Curran, H.
    KAUST Department
    Mechanical Engineering Program
    Clean Combustion Research Center
    Physical Science and Engineering (PSE) Division
    Chemical Engineering Program
    Date
    2017-01-01
    Permanent link to this record
    http://hdl.handle.net/10754/666810
    
    Metadata
    Show full item record
    Abstract
    Ignition delay times of two high-octane gasolines (RON: 91 and 97.5) and two low-octane gasolines (RON: 70.3 and 71.8) were studied in a high-pressure shock tube and in a rapid compression machine. The high-octane gasolines were oxygenated and contained 5 – 10 % ethanol. Experiments were carried out over a wide range of temperatures (700 – 1300 K), at two pressures (20 and 40 bar) and at two equivalence ratios (0.5 and 1.0). All fuels exhibited very similar reactivity at high temperatures. The RON-dependence was strongest in the NTC region while the sensitivity (RON – MON) effects were seen both in the intermediate- and low-temperature regions. Binary (PRF), tertiary (TPRF) and multi-component surrogates were formulated to simulate the reactivity of these gasolines. It was observed that PRF surrogates captured the reactivity of low sensitivity (and low octane) gasolines adequately while multicomponent surrogates were needed to fully describe the autoignition behavior of high sensitivity (and high octane) gasolines. Experimental and simulation results are compared across wide variety of gasoline ignition delay data. Fuel composition effects on autoignition were elaborated with the help of detailed chemical kinetic simulations.
    Sponsors
    Research reported in this work was funded by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Combustion Institute
    Conference/Event name
    11th Asia-Pacific Conference on Combustion, ASPACC 2017
    Additional Links
    https://research.kaust.edu.sa/en/publications/autoignition-of-low-to-high-octane-gasolines
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.