Show simple item record

dc.contributor.authorLukens, Joseph M.
dc.contributor.authorLaw, Kody J.H.
dc.contributor.authorJasra, Ajay
dc.contributor.authorLougovski, Pavel
dc.date.accessioned2020-12-27T08:31:30Z
dc.date.available2020-12-27T08:31:30Z
dc.date.issued2020-09
dc.identifier.citationLukens, J. M., Law, K. J. H., Jasra, A., & Lougovski, P. (2020). Computationally efficient Bayesian quantum state tomography. 2020 IEEE Photonics Conference (IPC). doi:10.1109/ipc47351.2020.9252416
dc.identifier.isbn9781728158914
dc.identifier.doi10.1109/IPC47351.2020.9252416
dc.identifier.urihttp://hdl.handle.net/10754/666658
dc.description.abstractWe describe a method for Bayesian quantum state estimation combining efficient parameterization, a pseudo-likelihood, and advanced numerical sampling techniques. Examples reveal significant computational speedup, indicating the approach's promise in practical quantum state tomography.
dc.description.sponsorshipWe thank R. S. Bennink and B. P. Williams for discussions. This work was performed in part at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy under contract no. DE-AC0500OR22725. Funding was provided by the U.S. Department of Energy, Office of Advanced Scientific Computing Research, through the Quantum Algorithm Teams and Early Career Research Programs.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9252416/
dc.rightsArchived with thanks to IEEE
dc.titleComputationally efficient Bayesian quantum state tomography
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.date2020-09-28 to 2020-10-01
dc.conference.name2020 IEEE Photonics Conference, IPC 2020
dc.conference.locationVirtual, Vancouver, BC, CAN
dc.eprint.versionPre-print
dc.contributor.institutionQuantum Information Science Group,Oak Ridge National Laboratory,Oak Ridge,Tennessee,USA,37831
dc.contributor.institutionUniversity of Manchester,School of Mathematics,Manchester,UK,M13 9PL
kaust.personJasra, Ajay
dc.identifier.eid2-s2.0-85097863801
refterms.dateFOA2020-12-29T11:16:53Z


Files in this item

Thumbnail
Name:
BayesQuantom%20IPC%202020.03.17.pdf
Size:
594.1Kb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record