Scaling sets the limits of large scale membrane distillation modules for the treatment of high salinity feeds
Name:
Scaling_scaling sets.pdf
Size:
2.310Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-12-01
Type
ArticleAuthors
Soukane, Sofiane
Elcik, Harun
Alpatova, Alla

Orfi, Jamel
Ali, Emad
AlAnsary, Hany
Ghaffour, NorEddine

KAUST Department
King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.Water Desalination and Reuse Research Center (WDRC)
Biological and Environmental Sciences and Engineering (BESE) Division
Environmental Science and Engineering Program
KAUST Grant Number
REP/1/3805-01-01Date
2020-12Embargo End Date
2022-12-01Submitted Date
2020-07-23Permanent link to this record
http://hdl.handle.net/10754/666433
Metadata
Show full item recordAbstract
In this study, the dynamics of scaled-up membrane distillation (MD) modules are tackled for the treatment of highly saline desalination brines. Physical phenomena occurring inside the feed chamber during process scale-up including temperature evolution, species distribution and scaling likeliness were explored using a multicomponent computational fluid dynamics (CFD) model that couples momentum, heat, ions transport and water permeation across the membrane. The model was calibrated with experiments carried out on a lab-scale direct contact MD system fed with concentrated seawater with a salinity of 61 g/L. The complete fall-off of the permeate flux occurred when the salinity reached 170 g/L from 61 g/L, caused by a scaling mostly due to calcium sulfate (gypsum). In order to predict scaling occurrence, an in-house code is embedded in the CFD model to solve Pitzer’s equation at every cell of the domain, enabling the calculation of species activity coefficients, the feed ionic strength, species effective concentration and degree of saturation of the solution with respect to gypsum. Results unveil that during the MD process of brines, the degree of saturation increases considerably in membrane vicinity while the average outlet salinity remains close to that at the inlet due to the relatively high flow rate. Extrapolation to longer modules revealed that an increase in the feed temperature increases the scaling likeliness while flow rates, especially in the high range, did not significantly impact scaling formation. The drop in performance from lab-scale module to a scaled-up size is shown for 1 m long generic modules with and without the use of antiscalants.Citation
Soukane, S., Elcik, H., Alpatova, A., Orfi, J., Ali, E., AlAnsary, H., & Ghaffour, N. (2020). Scaling sets the limits of large scale membrane distillation modules for the treatment of high salinity feeds. Journal of Cleaner Production, 125555. doi:10.1016/j.jclepro.2020.125555Sponsors
The research reported in this paper was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia, through the KAUST-KSU (King Saud University) initiative, Grant # REP/1/3805-01-01 (KAUST) and RG-1440-103 (KSU). The authors acknowledge the help, assistance and support from the Water Desalination and Reuse Center (WDRC) and KAUST staff.Publisher
Elsevier BVJournal
Journal of Cleaner ProductionAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S0959652620356018ae974a485f413a2113503eed53cd6c53
10.1016/j.jclepro.2020.125555