Soil Response during Globally Drained and Undrained Freeze–Thaw Cycles under Deviatoric Loading
Type
ArticleKAUST Department
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)Physical Science and Engineering (PSE) Division
Earth Science and Engineering Program
Energy Resources and Petroleum Engineering Program
Date
2020-12-12Online Publication Date
2020-12-12Print Publication Date
2021-02Submitted Date
2019-10-10Permanent link to this record
http://hdl.handle.net/10754/666383
Metadata
Show full item recordAbstract
Sediments experience shear and volumetric strains during freeze–thaw cycles. Measurements during globally drained and undrained cycles under constant deviatoric stresses show that the asymptotic shear and volumetric response vary with sediment type and drainage conditions. In particular, the sediment response is intimately related to the ice pore habit that results from effective stress and the ice capillary pressure σ′z/Δuiw. Pore-invasive ice formation in coarse-grained soils may trigger some contraction during the first freeze–thaw cycle, even in sands denser than the critical state. Grain-displacive ice growth in fine-grained soils causes cryogenic consolidation of the surrounding sediment; subsequent melting of the segregated ice lenses yields a high increase in pore water pressure during undrained thawing, a pronounced volume contraction under drained conditions, and preferential shear deformation along melting ice lenses in either case. Both dilative sand and normally consolidated (NC) clay specimens subjected to deviatoric loading exhibit unceasing vertical strain accumulation (i.e., ratcheting) during freeze–thaw cycles; the void ratio evolves toward asymptotic values in all cases. The freezing rate relative to the pressure diffusion rate Π=DT/Cv regulates drainage conditions during freeze–thaw cycles; globally drained freezing and thawing are anticipated in coarse-grained sediments.Citation
Kim, S. Y., Park, J., Cha, W., Lee, J.-S., & Carlos Santamarina, J. (2021). Soil Response during Globally Drained and Undrained Freeze–Thaw Cycles under Deviatoric Loading. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 06020030. doi:10.1061/(asce)gt.1943-5606.0002464Sponsors
This research was funded by the KAUST endowment. Additional funding was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF2020R1A2B5B03001470). Gabrielle E. Abelskamp edited the manuscript.Additional Links
http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0002464ae974a485f413a2113503eed53cd6c53
10.1061/(asce)gt.1943-5606.0002464