• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Video Self-Stitching Graph Network for Temporal Action Localization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    1.887Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Zhao, Chen
    Thabet, Ali Kassem cc
    Ghanem, Bernard cc
    KAUST Department
    Visual Computing Center (VCC)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Date
    2020-11-30
    Permanent link to this record
    http://hdl.handle.net/10754/666221
    
    Metadata
    Show full item record
    Abstract
    Temporal action localization (TAL) in videos is a challenging task, especially due to the large scale variation of actions. In the data, short actions usually occupy the major proportion, but have the lowest performance with all current methods. In this paper, we confront the challenge of short actions and propose a multi-level cross-scale solution dubbed as video self-stitching graph network (VSGN). We have two key components in VSGN: video self-stitching (VSS) and cross-scale graph pyramid network (xGPN). In VSS, we focus on a short period of a video and magnify it along the temporal dimension to obtain a larger scale. By our self-stitching approach, we are able to utilize the original clip and its magnified counterpart in one input sequence to take advantage of the complementary properties of both scales. The xGPN component further exploits the cross-scale correlations by a pyramid of cross-scale graph networks, each containing a hybrid temporal-graph module to aggregate features from across scales as well as within the same scale. Our VSGN not only enhances the feature representations, but also generates more positive anchors for short actions and more short training samples. Experiments demonstrate that VSGN obviously improves the localization performance of short actions as well as achieving the state-of-the-art overall performance on ActivityNet-v1.3, reaching an average mAP of 35.07 %.
    Publisher
    arXiv
    arXiv
    2011.14598
    Additional Links
    https://arxiv.org/pdf/2011.14598
    Collections
    Preprints; Electrical Engineering Program; Visual Computing Center (VCC); Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.