• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Second-order topological insulator and fragile topology in topological circuitry simulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    3.394Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Shang, Ce
    Zang, Xiaoning cc
    Gao, Wenlong
    Schwingenschlögl, Udo cc
    Manchon, Aurelien cc
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Material Science and Engineering Program
    Date
    2020-09-19
    Permanent link to this record
    http://hdl.handle.net/10754/666200
    
    Metadata
    Show full item record
    Abstract
    Second-order topological insulators (SOTIs) are the topological phases of matter in d dimensions that manifest (d-2)-dimensional localized modes at the intersection of the edges. We show that SOTIs can be designed via stacked Chern insulators with opposite chiralities connected by interlayer coupling. To characterize the bulk-corner correspondence, we establish a Jacobian-transformed nested Wilson loop method and an edge theory that are applicable to a wider class of higher-order topological systems. The corresponding topological invariant admits a filling anomaly of the corner modes with fractional charges. The system manifests a fragile topological phase characterized by the absence of a Wannier gap in the Wilson loop spectrum. Furthermore, we argue that the proposed approach can be generalized to multilayers. Our work offers perspectives for exploring and understanding higher-order topological phenomena.
    Publisher
    arXiv
    arXiv
    2009.09167
    Additional Links
    https://arxiv.org/pdf/2009.09167
    Collections
    Preprints; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.