• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Development and application of novel fusion approaches for elemental analysis of carbon-based materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Filipa Simoes - Dissertation - Final Draft.pdf
    Size:
    6.173Mb
    Format:
    PDF
    Description:
    Filipa Simoes - Dissertation - Final Draft
    Embargo End Date:
    2021-12-01
    Download
    Type
    Dissertation
    Authors
    Simoes, Filipa R. F. cc
    Advisors
    Da Costa, Pedro M. F. J. cc
    Committee members
    Nunes, Suzana Pereira cc
    Cavallo, Luigi cc
    Pumera, Martin
    Program
    Chemical Science
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2020-11-16
    Embargo End Date
    2021-12-01
    Permanent link to this record
    http://hdl.handle.net/10754/666186
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2021-12-01.
    Abstract
    Graphite and graphitic materials underpin a number of modern technologies such as electrodes for energy storage and conversion systems. Due to their aromatic honeycomb-type lattice and layered structure, these carbons host a rich variety of foreign elements in their interstices. Whether possessing a tubular morphology - that enables the encapsulation of inorganic compounds, or a planar texture - where anions and molecules can intercalate, the chemical analysis of graphite and graphitic materials is often confronted with the need to disintegrate the carbon matrix to quantify target elements, most often metals. However, the resilience of the sp2-hybridized carbon lattice to chemical attacks is an obstacle to its facile solubilization, a necessary step to perform some of the most common elemental analysis measurements. Over the years, a range of alternative approaches have sprung out to address this issue such as the combustion of the carbon matrix followed by the acid dissolution of its ash product. Unfortunately, none of these represents a viable method that can be applied to batteries, in great part because of the different components that make up the carbon-based electrodes. In this dissertation, a new protocol has been developed to digest graphitic materials aiming to access their elemental composition in bulk scale. The approach is based on the use of molten alkaline salts to promote the oxidation of the carbon lattice and leach out metals into a dilute acid solution. As a model sample, given the existence of standards with a matching matrix, single-walled carbon nanotubes were examined. After being subjected to the alkaline oxidation (a.k.a. fusion), they were solubilized and analyzed with Inductively Coupled Plasma-Optical Emission Spectroscopy, a widely popular tool for elemental analysis of metals. Structural analysis ensued to understand the interaction of the molten salts with the nanotubes. After evaluating the applicability of the protocol to other carbons, a more complex system was investigated, namely the carbon-based anode of an intercalation-type potassium ion battery. In this process, a direct way to quantify the mass of the alkali metal was discovered, one which makes use of complementary chemical and structural analytical tools.
    Citation
    Simoes, F. R. F. (2020). Development and application of novel fusion approaches for elemental analysis of carbon-based materials. KAUST Research Repository. https://doi.org/10.25781/KAUST-7OHBW
    DOI
    10.25781/KAUST-7OHBW
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-7OHBW
    Scopus Count
    Collections
    Dissertations; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.