• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    n-Type Conjugated Polymers for Organic Bioelectronics and Point-of-Care Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD Dissertation_David Ohayon_Final.pdf
    Size:
    10.52Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Embargo End Date:
    2021-11-30
    Download
    Type
    Dissertation
    Authors
    Ohayon, David cc
    Advisors
    Inal, Sahika cc
    Committee members
    McCulloch, Iain cc
    Arold, Stefan T. cc
    Malliaras, George
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2020-07
    Embargo End Date
    2021-11-30
    Permanent link to this record
    http://hdl.handle.net/10754/666168
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2021-11-30.
    Abstract
    Quick and early detection of abnormalities in the body's metabolism is of paramount importance to monitor, control, and prevent the associated diseases and pathologies. Biosensors technology is rapidly advancing, from the first electronic biosensor reported by Clark and Lyons in 1962 for blood glucose monitoring to today’s devices that can detect multiple metabolites in bodily fluids continuously and simultaneously within seconds. This rapid growth in point-of-care devices promises for the development of novel devices with different form factors and the ability to detect a wide range of biomarkers. These advancements mainly stem from the development of electronic materials that have properties better aligning with the biotic interface compared to the traditional metal electrodes. A promising class of electronic materials for biosensors is conjugated polymers. Conjugated polymers are carbon-based, organic semiconducting materials made of long chains comprising conjugated repeat units. The fundamental property that makes these materials so attractive is, however, not their electronic conductivity, but their ionic conductivity. As living organisms use ionic fluxes to relay signals, materials that can conduct ionic currents are believed to facilitate the communication between the electronics and living systems. This communication happens at various levels: organs, complex tissues, cells, cell membrane, proteins, and small biomolecules. Besides, the inherently soft nature of these materials facilitates mechanical conformity with soft biological systems. The field of organic bioelectronics has experienced tremendous growth over the past two decades, thanks to the design of new conjugated polymers customized for the biotic interface. While hole conducting (p-type) polymers have been widely investigated, electron conducting (n-type) counterparts are relatively new. This dissertation aims to explore the capabilities of n-type conjugated polymers for bioelectronics applications. Chapter 1 overviews the key properties of conjugated polymers and the resulting electronic devices that leverage these properties for specific applications in bioelectronics. Chapter 2 presents microfabricated metabolite (lactate and glucose) sensors based on an n-type polymer in combination with enzymes, and how this communication can enable energy production from bodily fluids. Finally, Chapter 3 reports the development of engineering and design strategies to enhance the performances of n-type polymers in bioelectronics.
    Citation
    Ohayon, D. (2020). n-Type Conjugated Polymers for Organic Bioelectronics and Point-of-Care Applications. KAUST Research Repository. https://doi.org/10.25781/KAUST-YNG86
    DOI
    10.25781/KAUST-YNG86
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-YNG86
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Bioscience Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.