A Multilayer Nonlinear Elimination Preconditioned Inexact Newton Method for Steady-State Incompressible Flow Problems in Three Dimensions
dc.contributor.author | Luo, Li | |
dc.contributor.author | Cai, Xiao Chuan | |
dc.contributor.author | Yan, Zhengzheng | |
dc.contributor.author | Xu, Lei | |
dc.contributor.author | Keyes, David E. | |
dc.date.accessioned | 2020-11-25T11:32:12Z | |
dc.date.available | 2020-11-25T11:32:12Z | |
dc.date.issued | 2020-11-24 | |
dc.date.submitted | 2019-12-16 | |
dc.identifier.citation | Luo, L., Cai, X.-C., Yan, Z., Xu, L., & Keyes, D. E. (2020). A Multilayer Nonlinear Elimination Preconditioned Inexact Newton Method for Steady-State Incompressible Flow Problems in Three Dimensions. SIAM Journal on Scientific Computing, 42(6), B1404–B1428. doi:10.1137/19m1307184 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.issn | 1095-7197 | |
dc.identifier.doi | 10.1137/19m1307184 | |
dc.identifier.uri | http://hdl.handle.net/10754/666105 | |
dc.description.abstract | We develop a multilayer nonlinear elimination preconditioned inexact Newton method for a nonlinear algebraic system of equations, and a target application is the three-dimensional steady-state incompressible Navier--Stokes equations at high Reynolds numbers. Nonlinear steadystate problems are often more difficult to solve than time-dependent problems because the Jacobian matrix is less diagonally dominant, and a good initial guess from the previous time step is not available. For such problems, Newton-like methods may suffer from slow convergence or stagnation even with globalization techniques such as line search. In this paper, we introduce a cascadic multilayer nonlinear elimination approach based on feedback from intermediate solutions to improve the convergence of Newton iteration. Numerical experiments show that the proposed algorithm is superior to the classical inexact Newton method and other single layer nonlinear elimination approaches in terms of the robustness and efficiency. Using the proposed nonlinear preconditioner with a highly parallel domain decomposition framework, we demonstrate that steady solutions of the Navier--Stokes equations with Reynolds numbers as large as 7,500 can be obtained for the lid-driven cavity flow problem in three dimensions without the use of any continuation methods. | |
dc.description.sponsorship | The first author is supported in part by NSFC 11701547. The third author is supported in part by NSFC 11901559. | |
dc.publisher | Society for Industrial & Applied Mathematics (SIAM) | |
dc.relation.url | https://epubs.siam.org/doi/10.1137/19M1307184 | |
dc.rights | Archived with thanks to SIAM Journal on Scientific Computing | |
dc.rights.uri | Redistribution subject to SIAM license or copyright. | |
dc.title | A Multilayer Nonlinear Elimination Preconditioned Inexact Newton Method for Steady-State Incompressible Flow Problems in Three Dimensions | |
dc.type | Article | |
dc.contributor.department | Extreme Computing Research Center | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Applied Mathematics and Computational Science Program | |
dc.contributor.department | Office of the President | |
dc.identifier.journal | SIAM Journal on Scientific Computing | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | Department of Mathematics, University of Macau, Macau, China. | |
dc.contributor.institution | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. | |
dc.identifier.volume | 42 | |
dc.identifier.issue | 6 | |
dc.identifier.pages | B1404-B1428 | |
kaust.person | Luo, Li | |
kaust.person | Keyes, David E. | |
dc.date.accepted | 2020-03-03 | |
refterms.dateFOA | 2020-11-25T11:34:40Z | |
dc.date.published-online | 2020-11-24 | |
dc.date.published-print | 2020-01 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Applied Mathematics and Computational Science Program
For more information visit: https://cemse.kaust.edu.sa/amcs -
Extreme Computing Research Center
-
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/