Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes.
Type
ArticleAuthors
Pozov, Sergey M
Ioakeimidis, Apostolos

Papadas, Ioannis T
Sun, Chen
Chrusou, Alexandra Z
Bradley, Donal

Choulis, Stelios A

KAUST Department
Physical Science and Engineering (PSE) DivisionMaterial Science and Engineering Program
Office of the VP
Research
Date
2020-11-11Submitted Date
2020-10-11Permanent link to this record
http://hdl.handle.net/10754/665959
Metadata
Show full item recordAbstract
The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.Citation
Pozov, S. M., Ioakeimidis, A., Papadas, I. T., Sun, C., Chrusou, A. Z., Bradley, D. D. C., & Choulis, S. A. (2020). Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes. Materials, 13(22), 5082. doi:10.3390/ma13225082Sponsors
This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No.647311) and further supported from internal Cyprus University of Technology funding to the Molecular Electronics and Photonics Research Unit. C.S and D.D.C.B thank the Royal Society for the provision of a Newton International Fellowship to C.S (Application number: NF171117) that funded her stay in Oxford.Publisher
MDPI AGJournal
Materials (Basel, Switzerland)PubMed ID
33187216Additional Links
https://www.mdpi.com/1996-1944/13/22/5082ae974a485f413a2113503eed53cd6c53
10.3390/ma13225082
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Related articles
- Simultaneous Improvement of Efficiency and Lifetime of Quantum Dot Light-Emitting Diodes with a Bilayer Hole Injection Layer Consisting of PEDOT:PSS and Solution-Processed WO<sub>3</sub>.
- Authors: Chen L, Wang S, Li D, Fang Y, Shen H, Li L, Du Z
- Issue date: 2018 Jul 18
- Effects of Gold-Nanoparticle Surface and Vertical Coverage by Conducting Polymer between Indium Tin Oxide and the Hole Transport Layer on Organic Light-Emitting Diodes.
- Authors: Kim SH, Bae TS, Heo W, Joo T, Song KD, Park HG, Ryu Sy
- Issue date: 2015 Jul 15
- Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes.
- Authors: Lee MH, Choi WH, Zhu F
- Issue date: 2016 Mar 21
- Solution-processed PEDOT:PSS:GO/Ag NWs composite electrode for flexible organic light-emitting diodes.
- Authors: Du H, Guo Y, Cui D, Li S, Wang W, Liu Y, Yao Y, Zhao L, Dong X
- Issue date: 2021 Mar 5
- Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics.
- Authors: Yeo JS, Yun JM, Kim DY, Park S, Kim SS, Yoon MH, Kim TW, Na SI
- Issue date: 2012 May