Show simple item record

dc.contributor.authorDi Vincenzo, Maria
dc.contributor.authorTiraferri, Alberto
dc.contributor.authorMusteata, Valentina-Elena
dc.contributor.authorChisca, Stefan
dc.contributor.authorSougrat, Rachid
dc.contributor.authorHuang, Li-Bo
dc.contributor.authorNunes, Suzana Pereira
dc.contributor.authorBarboiu, Mihail
dc.date.accessioned2020-11-10T06:07:54Z
dc.date.available2020-11-10T06:07:54Z
dc.date.issued2020-11-09
dc.date.submitted2020-05-27
dc.identifier.citationDi Vincenzo, M., Tiraferri, A., Musteata, V.-E., Chisca, S., Sougrat, R., Huang, L.-B., … Barboiu, M. (2020). Biomimetic artificial water channel membranes for enhanced desalination. Nature Nanotechnology. doi:10.1038/s41565-020-00796-x
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.doi10.1038/s41565-020-00796-x
dc.identifier.urihttp://hdl.handle.net/10754/665884
dc.description.abstractInspired by biological proteins, artificial water channels (AWCs) can be used to overcome the performances of traditional desalination membranes. Their rational incorporation in composite polyamide provides an example of biomimetic membranes applied under representative reverse osmosis desalination conditions with an intrinsically high water-to-salt permeability ratio. The hybrid polyamide presents larger voids and seamlessly incorporates I–quartet AWCs for highly selective transport of water. These biomimetic membranes can be easily scaled for industrial standards (>m2), provide 99.5% rejection of NaCl or 91.4% rejection of boron, with a water flux of 75 l m−2 h−1 at 65 bar and 35,000 ppm NaCl feed solution, representative of seawater desalination. This flux is more than 75% higher than that observed with current state-of-the-art membranes with equivalent solute rejection, translating into an equivalent reduction of the membrane area for the same water output and a roughly 12% reduction of the required energy for desalination.
dc.description.sponsorshipThis work was supported by Agence Nationale de la Recherche grant nos. ANR-18-CE06-0004-02, WATERCHANNELS and ERANETMED2-72-357 IDEA. The authors thank D. Cot (University of Montpellier) for SEM experiments, F. Ricceri (Politecnico di Torino) for help with filtration experiments and M. Deleanu (University of Montpellier) for help with the organic synthesis of HC6 and characterization.
dc.publisherSpringer Nature
dc.relation.urlhttp://www.nature.com/articles/s41565-020-00796-x
dc.rightsArchived with thanks to Nature Nanotechnology
dc.titleBiomimetic artificial water channel membranes for enhanced desalination
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentElectron Microscopy
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentNanostructured Polymeric Membrane Lab
dc.identifier.journalNature Nanotechnology
dc.rights.embargodate2021-05-09
dc.eprint.versionPost-print
dc.contributor.institutionInstitut Européen des Membranes, Adaptive Supramolecular, Nanosystems Group, University of Montpellier, ENSCM, CNRS, Montpellier, France.
dc.contributor.institutionDepartment of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy.
dc.contributor.institutionLehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
kaust.personMusteata, Valentina-Elena
kaust.personChisca, Stefan
kaust.personSougrat, Rachid
kaust.personNunes, Suzana Pereira
dc.date.accepted2020-10-13


Files in this item

Thumbnail
Name:
5884-Draft_AWC_MDB2020Revised_4_MDB_st-sn-Mar28.pdf
Size:
2.913Mb
Format:
PDF
Description:
Accepted Manuscript
Embargo End Date:
2021-05-09

This item appears in the following Collection(s)

Show simple item record