Particle concentration variation for inflow profiles in high reynolds number turbulent boundary layer
Type
Conference PaperAuthors
Rahman, Mustafa M.
Samtaney, Ravi

KAUST Department
Fluid and Plasma Simulation Group (FPS)Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
URF/1/1704-01-01Date
2020-10-12Online Publication Date
2020-10-12Print Publication Date
2020-07-13Permanent link to this record
http://hdl.handle.net/10754/665881
Metadata
Show full item recordAbstract
Large-eddy simulations (LES) of incompressible turbulent boundary-layer flows can simulate a fundamental unsteady turbulent flow, including time-variant streamwise and wall-normal velocity as well as the near-wall locations of significant turbulence intensities. A typical illustration of turbulent flows with such high Reynolds numbers can be roughly approximated to atmospheric boundary-layer flows. To bypass the demanding mesh criteria of near-ground field and direct numerical simulations, we adopt a virtual-wall model with a stretched-vortex subgrid-scale model. We simulate the dynamics of solid particles in this wall-modeled LES approach toward incompressible flow. The particles considered are both charged and uncharged, and have a fixed concentration profile with no fluctuations at the inflow. An extended streamwise simulation domain is implemented as an alternative to rerunning the simulation with a turbulent inflow profile from the simulation of the previous downstream profile. By extending the streamwise domain, the fluctuation dynamics of the particles reach a steady state far downstream from the inflow. The streamwise and altitude variation of the particle parameters are compared for various particle-concentration inflow profiles. Furthermore, an estimate of the streamwise variation of parameters is also observed. This study is the first step towards enhancing our understanding of the particle dynamics in turbulent flows.Citation
Rahman, M. M., & Samtaney, R. (2020). Particle Concentration Variation for Inflow Profiles in High Reynolds Number Turbulent Boundary Layer. Volume 2: Fluid Mechanics; Multiphase Flows. doi:10.1115/fedsm2020-20293Sponsors
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST) through the KAUST Office of Competitive Research Funds (OCRF) under Award No. URF/1/1704-01-01 and KAUST baseline research fund BAS/1/1349-01-1. The Cray XC40 Shaheen II at KAUST was utilized for the simulations. Some of the results documented here were also presented at the ASME AJKFLUIDS 2019 [15].Publisher
American Society of Mechanical EngineersISBN
9780791883723Additional Links
https://asmedigitalcollection.asme.org/FEDSM/proceedings/FEDSM2020/83723/Virtual,%20Online/1088091ae974a485f413a2113503eed53cd6c53
10.1115/FEDSM2020-20293