Show simple item record

dc.contributor.authorGiri, Binod
dc.contributor.authorRoscoe, John M.
dc.contributor.authorSzőri, Milán
dc.contributor.authorFarooq, Aamir
dc.date.accessioned2020-11-09T11:21:55Z
dc.date.available2020-11-09T11:21:55Z
dc.date.issued2020-11-05
dc.date.submitted2020-06-13
dc.identifier.citationGiri, B. R., Roscoe, J. M., Szőri, M., & Farooq, A. (2020). A theoretical kinetic study on the reaction of atomic bromine with toluene. International Journal of Chemical Kinetics. doi:10.1002/kin.21451
dc.identifier.issn0538-8066
dc.identifier.issn1097-4601
dc.identifier.doi10.1002/kin.21451
dc.identifier.urihttp://hdl.handle.net/10754/665868
dc.description.abstractThe reaction of Br atoms with toluene was investigated by employing various quantum chemical methods and statistical rate theory calculations. Various composite methods such as CBS-QB3, G3, and G4 were used to obtain the energy profiles of the Br + toluene reaction. Further single-point calculations of the stationary points were performed at the CCSD(T)/cc-pV(D,T)Z level of theory using B3LYP/cc-pVTZ and MP2/aug-cc-pVDZ optimized geometries. Our calculations revealed several reaction pathways in the potential energy surface of the Br + toluene reaction. However, the reaction pathway that abstracts hydrogen atoms from the methyl site of toluene was found to be energetically the most favorable. This reaction pathway appears to proceed via a complex forming mechanism, similar to that seen in the reactions of cyclic ethers with Br atoms. Our calculations reveal that the reaction of a Br atom with toluene proceeds exclusively via intermediate complexes in an overall endothermic addition-elimination mechanism. Based on the ab initio results, the standard enthalpies of formation of the product radicals and the rate coefficients for the relevant reaction pathways are computed. The calculated values of the enthalpy of formation are found to match excellently with the available literature data. Lowering the barrier height of hydrogen abstraction reaction at the methyl site by less than 4 kJ/mol, the calculated rate coefficients, kov(T) = 1.36 × 10–23 T3.687 exp(−4.57 K/T) cm3 molecule–1 s–1, reproduced the experimental data excellently from 200 to 500 K.
dc.description.sponsorshipResearch reported in this work was funded by King Abdullah University of Science and Technology (KAUST). This research was also supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, aimed to promote cooperation between higher education and industry.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/10.1002/kin.21451
dc.rightsArchived with thanks to International Journal of Chemical Kinetics
dc.titleA theoretical kinetic study on the reaction of atomic bromine with toluene
dc.typeArticle
dc.contributor.departmentChemical Kinetics & Laser Sensors Laboratory
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalInternational Journal of Chemical Kinetics
dc.rights.embargodate2021-11-05
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Chemistry Acadia University Wolfville Nova Scotia Canada
dc.contributor.institutionInstitute of Chemistry, Faculty of Materials Science and Engineering University of Miskolc Miskolc Hungary
kaust.personGiri, Binod
kaust.personFarooq, Aamir
dc.date.accepted2020-10-22
refterms.dateFOA2020-11-10T10:28:44Z


Files in this item

Thumbnail
Name:
Toluene-Theory-revised-final-unhighlighted.pdf
Size:
583.5Kb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2021-11-05

This item appears in the following Collection(s)

Show simple item record