Controlling wave-front shape and propagation time with tunable disordered non-Hermitian multilayers
dc.contributor.author | Novitsky, Denis | |
dc.contributor.author | Lyakhov, Dmitry | |
dc.contributor.author | Michels, Dominik L. | |
dc.contributor.author | Redka, Dmitrii | |
dc.contributor.author | Pavlov, Alexander | |
dc.contributor.author | Shalin, Alexander | |
dc.date.accessioned | 2020-11-04T11:13:25Z | |
dc.date.available | 2020-11-04T11:13:25Z | |
dc.date.issued | 2020-10-19 | |
dc.identifier.uri | http://hdl.handle.net/10754/665806 | |
dc.description.abstract | Unique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices. | |
dc.description.sponsorship | The work was supported by the Belarusian Republican Foundation for Fundamental Research (Project No. F20R158), the Russian Foundation for Basic Research (Projects No. 18-02-00414 and 20-52-00031), and Government of Russian Federation (Grant No. 08-08). Numerical simulations of the nonlinear interaction of light with resonant media have been supported by the Russian Science Foundation (Project No. 18-72-10127). | |
dc.publisher | arXiv | |
dc.relation.url | https://arxiv.org/pdf/2010.09324 | |
dc.rights | Archived with thanks to arXiv | |
dc.title | Controlling wave-front shape and propagation time with tunable disordered non-Hermitian multilayers | |
dc.type | Preprint | |
dc.contributor.department | Visual Computing Center (VCC) | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Computer Science Program | |
dc.eprint.version | Pre-print | |
dc.contributor.institution | B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezavisimosti Avenue 68, 220072 Minsk, Belarus. | |
dc.contributor.institution | Saint Petersburg, Electrotechnical University “LETI” (ETU), Prof. Popova Street 5, 197376 St. Petersburg, Russia. | |
dc.contributor.institution | Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia. | |
dc.contributor.institution | ITMO University, Kronverksky Prospekt 49, 197101 St. Petersburg, Russia. | |
dc.identifier.arxivid | 2010.09324 | |
kaust.person | Lyakhov, Dmitry | |
kaust.person | Michels, Dominik L. | |
refterms.dateFOA | 2020-11-04T11:13:53Z |
Files in this item
This item appears in the following Collection(s)
-
Preprints
-
Computer Science Program
For more information visit: https://cemse.kaust.edu.sa/cs -
Visual Computing Center (VCC)
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/