• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Porous Hybrid Materials for Catalysis and Energy applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ButhainahAlshankitiDissertation_2020(1).pdf
    Size:
    41.29Mb
    Format:
    PDF
    Description:
    Buthainah Alshankiti - Final Dissertation
    Embargo End Date:
    2021-11-03
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Alshankiti, Buthainah cc
    Advisors
    Khashab, Niveen M. cc
    Committee members
    Basset, Jean-Marie cc
    Castaño, Pedro cc
    Durand, Jean-Olivier cc
    Program
    Chemical Science
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2020-10
    Embargo End Date
    2021-11-03
    Permanent link to this record
    http://hdl.handle.net/10754/665766
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2021-11-03.
    Abstract
    Porous materials have exhibited some remarkable performances in wide range of applications such as in the field of catalysis, gas adsorption, water treatment, bio- imaging, drugs delivery and energy applications. This is due to the pore characteristic of these materials. In fact, their properties depend mainly on the pore size, pore morphology and pore size distribution. The knowledge of understanding the effect of chemical nature of porous materials on the heterogeneous catalysis has significantly increased since last decades resulting in the increase in the development of innovative porous nano-hybrid materials. Scientists have integrated inorganic and organic materials to generate new structures with unique properties. A significant enhancement in their properties have been observed compared to their single components. This research work focuses on the design and tailoring of innovative hybrid materials with intrinsic porosity based on well studied single components for catalysis and energy applications. The first example is represented by the impregnation technique of gold nanoclusters (Au NCs) inside the pores of mesoporous silica nanoparticles (MSNs). The performance of Au NCs/ MSN as catalyst was evaluated by the epoxidation reaction of styrene. It shows a remarkable catalytic activity, high selectivity towards styrene epoxide (74%) and high conversion of styrene (88%). We have also investigated the self-assembly of polyoxomolybdates (P2Mo5O23) and cyclodextrins (CDs) as molecular building blocks (MBBs) through the bridging effect of counter cations (Na+, K+, and Cs+). This assembly has resulted in the formation of seven different crystals to give seven crystal structures of POM-CD MOFs. These novel porous hybrid frameworks with intrinsic porosity and tunable porosity have been well studied and characterized using different techniques. Interestingly, one of these structures (K-PMo-γ-CD) was obtained in good yield (70 % based on γ-CD), and was therefore selected to further study the catalytic performance of this type of the hybrid organic-inorganic structures (POM-CD MOFs). The ketalization process of cyclohexanone with glycol using K-PMo-γ-CD as catalysts, have been chosed as module reaction for this study. Our results showed that the material give the best catalytic performance, which reached its maximum conversion of 99.94 %, at 100oC. Finally, the scope of our research have been extended by combining another porous macrocycle, a trianglamine (TA), with the metal cluster complex system (polyoxometalate). This hybrid framework (POM-TA) have been well designed and synthesized based on molecular recognition. A detailed characterization shows that the POM-TA material has high surface area that suggests that it can be suitable as catalyst for some industrial processes. Our research on such organic-inorganic hybrid frameworks represents a promising enrichment in the field of heterogeneous catalysis. This is largely due to the possibility of combining different molecular building blocks to form a hybrid framework with improved properties such as intrinsic porosity, large surface area, and tunable structural properties.
    Citation
    Alshankiti, B. (2020). Porous Hybrid Materials for Catalysis and Energy applications. KAUST Research Repository. https://doi.org/10.25781/KAUST-VZ3MT
    DOI
    10.25781/KAUST-VZ3MT
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-VZ3MT
    Scopus Count
    Collections
    Dissertations; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.