• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Optimal Gradient Compression for Distributed and Federated Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    975.5Kb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Albasyoni, Alyazeed
    Safaryan, Mher cc
    Condat, Laurent
    Richtarik, Peter cc
    KAUST Department
    Computer Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2020-10-07
    Permanent link to this record
    http://hdl.handle.net/10754/665557
    
    Metadata
    Show full item record
    Abstract
    Communicating information, like gradient vectors, between computing nodes in distributed and federated learning is typically an unavoidable burden, resulting in scalability issues. Indeed, communication might be slow and costly. Recent advances in communication-efficient training algorithms have reduced this bottleneck by using compression techniques, in the form of sparsification, quantization, or low-rank approximation. Since compression is a lossy, or inexact, process, the iteration complexity is typically worsened; but the total communication complexity can improve significantly, possibly leading to large computation time savings. In this paper, we investigate the fundamental trade-off between the number of bits needed to encode compressed vectors and the compression error. We perform both worst-case and average-case analysis, providing tight lower bounds. In the worst-case analysis, we introduce an efficient compression operator, Sparse Dithering, which is very close to the lower bound. In the average-case analysis, we design a simple compression operator, Spherical Compression, which naturally achieves the lower bound. Thus, our new compression schemes significantly outperform the state of the art. We conduct numerical experiments to illustrate this improvement.
    Publisher
    arXiv
    arXiv
    2010.03246
    Additional Links
    https://arxiv.org/pdf/2010.03246
    Collections
    Preprints; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.