Show simple item record

dc.contributor.authorGuan, Yanran
dc.contributor.authorLiu, Han
dc.contributor.authorLiu, Kun
dc.contributor.authorYin, Kangxue
dc.contributor.authorHu, Ruizhen
dc.contributor.authorvan Kaick, Oliver
dc.contributor.authorZhang, Yan
dc.contributor.authorYumer, Ersin
dc.contributor.authorCarr, Nathan
dc.contributor.authorMech, Radomir
dc.contributor.authorZhang, Hao
dc.date.accessioned2020-10-13T05:40:14Z
dc.date.available2020-10-13T05:40:14Z
dc.date.issued2020-10-12
dc.date.submitted2019-05-22
dc.identifier.citationGuan, Y., Liu, H., Liu, K., Yin, K., Hu, R., van Kaick, O., … Zhang, H. (2021). FAME: 3D Shape Generation via Functionality-Aware Model Evolution. IEEE Transactions on Visualization and Computer Graphics, 1–1. doi:10.1109/tvcg.2020.3029759
dc.identifier.issn2160-9306
dc.identifier.doi10.1109/TVCG.2020.3029759
dc.identifier.urihttp://hdl.handle.net/10754/665541
dc.description.abstractWe introduce a modeling tool which can evolve a set of 3D objects in a functionality-aware manner. Our goal is for the evolution to generate large and diverse sets of plausible 3D objects for data augmentation, constrained modeling, as well as open-ended exploration to possibly inspire new designs. Starting with an initial population of 3D objects belonging to one or more functional categories, we evolve the shapes through part re-combination to produce generations of hybrids or crossbreeds between parents from the heterogeneous shape collection. Evolutionary selection of offsprings is guided both by a functional plausibility score derived from functionality analysis of shapes in the initial population and user preference, as in a design gallery. Since cross-category hybridization may result in offsprings not belonging to any of the known functional categories, we develop a means for functionality partial matching to evaluate functional plausibility on partial shapes. We show a variety of plausible hybrid shapes generated by our functionality-aware model evolution, which can complement existing datasets as training data and boost the performance of contemporary data-driven segmentation schemes, especially in challenging cases.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9220814/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9220814
dc.relation.urlhttp://arxiv.org/pdf/2005.04464
dc.rights(c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.rightsThis file is an open access version redistributed from: http://arxiv.org/pdf/2005.04464
dc.subjectFunctionality-aware shape modeling
dc.subjectcross-category hybrids
dc.subjectset evolution
dc.subjectfunctionality partial matching
dc.titleFAME: 3D Shape Generation via Functionality-Aware Model Evolution
dc.typeArticle
dc.contributor.departmentComputer Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalIEEE Transactions on Visualization and Computer Graphics
dc.eprint.versionPost-print
dc.contributor.institutionSchool of Computer Science, Carleton University, Ottawa, Ontario Canada
dc.contributor.institutionDepartment of Computer Science and Technology, Nanjing University, Nanjing, Nanjing China
dc.contributor.institutionResearch, NVIDIA, Toronto, Ontario Canada
dc.contributor.institutionCollege of Computer Science & Software Engineering, Shenzhen University, 47890 Shenzhen, Guangdong China 518060
dc.contributor.institutionSchool of Computer Science, Carleton University, Ottawa, Ontario Canada K1S 5B6
dc.contributor.institutionDepartment of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu China 210093
dc.contributor.institutionMachine Learning, Argo AI, Mountain View, California United States
dc.contributor.institutionATL, Adobe Systems, San Jose, California United States 95110-2704
dc.contributor.institutionAdvanced Technology Labs, Adobe Systems Inc., San Jose, California United States
dc.contributor.institutionComputing Science, Simon Fraser University, Burnaby, British Columbia Canada V5A1S6
dc.identifier.pages1-1
dc.identifier.arxivid2005.04464
kaust.personLiu, Han
dc.date.accepted2020-10-12
dc.identifier.eid2-s2.0-85101768660
refterms.dateFOA2020-12-07T13:32:16Z
dc.date.published-online2020-10-12
dc.date.published-print2020


Files in this item

Thumbnail
Name:
Articlefile1.pdf
Size:
8.005Mb
Format:
PDF
Description:
Pre-print

This item appears in the following Collection(s)

Show simple item record