Show simple item record

dc.contributor.authorBertrand, Fleurianne
dc.contributor.authorBoffi, Daniele
dc.date.accessioned2020-10-12T12:00:58Z
dc.date.available2020-10-12T12:00:58Z
dc.date.issued2020-07-30
dc.identifier.citationBertrand, F., & Boffi, D. (2020). The Prager–Synge theorem in reconstruction based a posteriori error estimation. Contemporary Mathematics, 45–67. doi:10.1090/conm/754/15152
dc.identifier.isbn9781470451639
dc.identifier.isbn9781470456375
dc.identifier.issn0271-4132
dc.identifier.issn1098-3627
dc.identifier.doi10.1090/conm/754/15152
dc.identifier.urihttp://hdl.handle.net/10754/665533
dc.description.abstractIn this paper we review the hypercircle method of Prager and Synge. This theory inspired several studies and induced an active research in the area of a posteriori error analysis. In particular, we review the Braess–Schoberl error estimator in the context of the Poisson problem. We discuss adaptive finite element schemes based on two variants of the estimator and we prove the convergence and optimality of the resulting algorithms.
dc.publisherAmerican Mathematical Society
dc.relation.urlhttps://www.ams.org/books/conm/754/15152/conm754-15152.pdf
dc.rightsThis is the accepted manuscript version of a paper later published in final form with the American Mathematical Society.
dc.titleThe Prager–Synge theorem in reconstruction based a posteriori error estimation
dc.typeBook Chapter
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST), Saudi Arabia
dc.eprint.versionPost-print
dc.contributor.institutionInstitut fur Mathematik, Humboldt Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
dc.contributor.institutionDipartimento di Matematica “F. Casorati”, University of Pavia, Italy
dc.contributor.institutionDepartment of Mathematics and System Analysis, Aalto University, Finland
dc.identifier.pages45-67
dc.identifier.arxividarXiv:1907.00440
kaust.personBoffi, Daniele
refterms.dateFOA2020-10-15T10:30:45Z
dc.date.published-online2020-07-30
dc.date.published-print2020


Files in this item

Thumbnail
Name:
main.pdf
Size:
422.7Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record