The Prager–Synge theorem in reconstruction based a posteriori error estimation
Type
Book ChapterDate
2020-07-30Online Publication Date
2020-07-30Print Publication Date
2020Permanent link to this record
http://hdl.handle.net/10754/665533
Metadata
Show full item recordAbstract
In this paper we review the hypercircle method of Prager and Synge. This theory inspired several studies and induced an active research in the area of a posteriori error analysis. In particular, we review the Braess–Schoberl error estimator in the context of the Poisson problem. We discuss adaptive finite element schemes based on two variants of the estimator and we prove the convergence and optimality of the resulting algorithms.Citation
Bertrand, F., & Boffi, D. (2020). The Prager–Synge theorem in reconstruction based a posteriori error estimation. Contemporary Mathematics, 45–67. doi:10.1090/conm/754/15152Publisher
American Mathematical Society (AMS)ISBN
97814704516399781470456375
arXiv
1907.00440Additional Links
https://www.ams.org/books/conm/754/15152/conm754-15152.pdfae974a485f413a2113503eed53cd6c53
10.1090/conm/754/15152