Show simple item record

dc.contributor.authorHaskovec, Jan
dc.contributor.authorMarkou, Ioannis
dc.date.accessioned2020-09-30T07:06:22Z
dc.date.available2020-09-30T07:06:22Z
dc.date.issued2020-08-25
dc.date.submitted2020-05-13
dc.identifier.citationHaskovec, J., & Markou, I. (2020). Exponential asymptotic flocking in the Cucker-Smale model with distributed reaction delays. Mathematical Biosciences and Engineering, 17(5), 5651–5671. doi:10.3934/mbe.2020304
dc.identifier.issn1551-0018
dc.identifier.issn1547-1063
dc.identifier.doi10.3934/MBE.2020304
dc.identifier.urihttp://hdl.handle.net/10754/665370
dc.description.abstractWe study a variant of the Cucker-Smale system with distributed reaction delays. Using backward-forward and stability estimates on the quadratic velocity fluctuations we derive sufficient conditions for asymptotic flocking of the solutions. The conditions are formulated in terms of moments of the delay distribution and they guarantee exponential decay of velocity fluctuations towards zero for large times. We demonstrate the applicability of our theory to particular delay distributions - exponential, uniform and linear. For the exponential distribution, the flocking condition can be resolved analytically, leading to an explicit formula. For the other two distributions, the satisfiability of the assumptions is investigated numerically.
dc.description.sponsorshipJH acknowledges the support of the KAUST baseline funds. IM was funded by the project ARCHERS - Stavros Niarchos Foundation - IACM.
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.urlhttp://www.aimspress.com/article/10.3934/mbe.2020304
dc.rightsThis is an open access article distributed under the terms of the Creative Commons Attribution License.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.titleExponential asymptotic flocking in the Cucker-Smale model with distributed reaction delays
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalMathematical Biosciences and Engineering
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitute of Applied and Computational Mathematics (IACM-FORTH), N. Plastira 100, Vassilika Vouton GR - 700 13, Heraklion, Crete, Greece
dc.identifier.volume17
dc.identifier.issue5
dc.identifier.pages5651-5671
dc.identifier.arxivid2005.04657
kaust.personHaskovec, Jan
dc.date.accepted2020-08-13
dc.identifier.eid2-s2.0-85091402385
refterms.dateFOA2020-09-30T07:07:17Z
kaust.acknowledged.supportUnitKAUST baseline fund
dc.date.published-online2020-08-25
dc.date.published-print2020


Files in this item

Thumbnail
Name:
mbe-17-05-304.pdf
Size:
731.2Kb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record

This is an open access article distributed under the terms of the Creative Commons Attribution License.
Except where otherwise noted, this item's license is described as This is an open access article distributed under the terms of the Creative Commons Attribution License.