Show simple item record

dc.contributor.authorRichtarik, Peter
dc.contributor.authorJahani, Majid
dc.contributor.authorAhipaşaoğlu, Selin Damla
dc.contributor.authorTakáč, Martin
dc.date.accessioned2020-09-29T12:05:47Z
dc.date.available2020-09-29T12:05:47Z
dc.date.issued2020-09-22
dc.date.submitted2019-10-03
dc.identifier.citationRichtárik, P., Jahani, M., Ahipaşaoğlu, S. D., & Takáč, M. (2020). Alternating maximization: unifying framework for 8 sparse PCA formulations and efficient parallel codes. Optimization and Engineering. doi:10.1007/s11081-020-09562-3
dc.identifier.issn1573-2924
dc.identifier.issn1389-4420
dc.identifier.doi10.1007/s11081-020-09562-3
dc.identifier.urihttp://hdl.handle.net/10754/665355
dc.description.abstractGiven a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via the alternating maximization (AM) method. We show that AM is equivalent to GPower for all formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at (1) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), (2) obtaining solutions explaining more variance and (3) dealing with big data problems (our cluster code can solve a 357 GB problem in a minute).
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/10.1007/s11081-020-09562-3
dc.relation.urlhttp://arxiv.org/pdf/1212.4137
dc.rightsArchived with thanks to Optimization and Engineering
dc.rightsThis file is an open access version redistributed from: http://arxiv.org/pdf/1212.4137
dc.titleAlternating maximization: unifying framework for 8 sparse PCA formulations and efficient parallel codes
dc.typeArticle
dc.contributor.departmentComputer Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalOptimization and Engineering
dc.rights.embargodate2021-09-22
dc.eprint.versionPre-print
dc.contributor.institutionIndustrial and Systems Engineering, Lehigh University, 200 West Packer Avenue, Bethlehem, PA, 18015, USA
dc.contributor.institutionMathematical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
dc.identifier.arxivid1212.4137
kaust.personRichtarik, Peter
dc.date.accepted2020-09-07
dc.identifier.eid2-s2.0-85091319469
refterms.dateFOA2020-12-07T13:19:29Z
dc.date.published-online2020-09-22
dc.date.published-print2021-09


Files in this item

Thumbnail
Name:
Articlefile1.pdf
Size:
933.2Kb
Format:
PDF
Description:
Pre-print

This item appears in the following Collection(s)

Show simple item record