High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver
Name:
High order_1-s2.0-S0021999120306185-main.pdf
Size:
56.89Mb
Format:
PDF
Description:
Accepted Article
Embargo End Date:
2022-09-22
Type
ArticleAuthors
Parsani, Matteo
Boukharfane, Radouan

Nolasco, Irving Reyna
Del Rey Fernández, David C.
Zampini, Stefano

Hadri, Bilel

Dalcin, Lisandro

KAUST Department
Applied Mathematics and Computational Science ProgramExtreme Computing Research Center
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
King Abdullah University of Science and Technology (KAUST), Computer Electrical and Mathematical Science and Engineering Division (CEMSE), Extreme Computing Research Center (ECRC), Thuwal, Saudi Arabia.
Supercomputing, Computational Scientists
Date
2020-09-22Embargo End Date
2022-09-22Submitted Date
2020-02-08Permanent link to this record
http://hdl.handle.net/10754/665342
Metadata
Show full item recordAbstract
This work reports on the performances of a fully-discrete hp-adaptive entropy stable discontinuous collocated Galerkin method for the compressible Naiver–Stokes equations. The resulting code framework is denoted by SSDC, the first S for entropy, the second for stable, and DC for discontinuous collocated. The method is endowed with the summation-by-parts property, allows for arbitrary spatial and temporal order, and is implemented in an unstructured high performance solver. The considered class of fully-discrete algorithms are systematically designed with mimetic and structure preserving properties that allow the transfer of continuous proofs to the fully discrete setting. Our goal is to provide numerical evidence of the adequacy and maturity of these high-order methods as potential base schemes for the next generation of unstructured computational fluid dynamics tools. We provide a series of test cases of increased difficulty, ranging from non-smooth to turbulent flows, in order to evaluate the numerical performance of the algorithms. Results on weak and strong scaling of the distributed memory implementation demonstrate that the parallel SSDC solver can scale efficiently over 100,000 processes.Citation
Parsani, M., Boukharfane, R., Nolasco, I. R., Del Rey Fernández, D. C., Zampini, S., Hadri, B., & Dalcin, L. (2020). High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver. Journal of Computational Physics, 109844. doi:10.1016/j.jcp.2020.109844Sponsors
The research reported in this paper was funded by King Abdullah University of Science and Technology. We are thankful to the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology for their computing resources. Special thanks are extended to the McLaren F1 racing Team for providing experimental data and CAD geometries for the delta wing test case.Publisher
Elsevier BVJournal
Journal of Computational PhysicsAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S0021999120306185ae974a485f413a2113503eed53cd6c53
10.1016/j.jcp.2020.109844