Show simple item record

dc.contributor.authorOgieglo, Wojciech
dc.contributor.authorGenduso, Giuseppe
dc.contributor.authorRubner, Jens
dc.contributor.authorHofmann-Préveraud de Vaumas, Jacques
dc.contributor.authorWessling, Matthias
dc.contributor.authorPinnau, Ingo
dc.date.accessioned2020-09-27T13:04:31Z
dc.date.available2020-09-27T13:04:31Z
dc.date.issued2020-09-23
dc.date.submitted2020-05-17
dc.identifier.citationOgieglo, W., Genduso, G., Rubner, J., Hofmann-Préveraud de Vaumas, J., Wessling, M., & Pinnau, I. (2020). CO2/CH4 Pure- and Mixed-Gas Dilation and Sorption in Thin (∼500 nm) and Ultrathin (∼50 nm) Polymers of Intrinsic Microporosity. Macromolecules. doi:10.1021/acs.macromol.0c01163
dc.identifier.issn0024-9297
dc.identifier.issn1520-5835
dc.identifier.doi10.1021/acs.macromol.0c01163
dc.identifier.urihttp://hdl.handle.net/10754/665324
dc.description.abstractIn this work, we present (i) the dilation and refractive index variation associated with changes in film density and (ii) gas uptake of pure CO2 and CH4, as well as their equimolar mixture in thin films of two polymers of intrinsic microporosity (PIMs), that is, PIM-1 and poly(trimethylsilyl)propyne (PTMSP). A conventional low-free-volume glassy polymer, cellulose triacetate, was also investigated as the reference material. All experiments were performed with ∼50 and ∼500 nm-thick films up to partial pressures of 25 bar using in situ interference-enhanced spectroscopic ellipsometry. In all cases, film thickness reduction promoted the collapse of the frozen-in free volume. Particularly for thin PIM-1 and PTMSP films, the CO2 and CH4 pure-gas uptakes were generally lower than in bulk samples. In the most extreme case of the ultrathin ∼50 nm PTMSP film, we could detect a strikingly similar qualitative behavior to the penetrant partial molar volume and dilation in rubbery polymers. Remarkably, in PIM-1, the collapse of the frozen-in free volume seemed to be opposed by its ultra-micropores (<7 Å), which was not the case in PTMSP with larger micropores (>10 Å). In mixed-gas experiments, the refractive index response of all investigated films closely followed the trend observed during CO2 pure-gas sorption. In both thickness ranges and throughout the entire pressure range, the samples dilated less in the multicomponent environment than under the corresponding ideal pure-gas conditions. We found this phenomenon consistent with the pure- and mixed-gas uptake behavior of PIM-1 and PTMSP bulk films reported in the literature.
dc.description.sponsorshipThis work was supported by funding (BAS/1/1323-01-01) from King Abdullah University of Science and Technology (KAUST).
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acs.macromol.0c01163
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.macromol.0c01163.
dc.titleCO2/CH4 Pure- and Mixed-Gas Dilation and Sorption in Thin (∼500 nm) and Ultrathin (∼50 nm) Polymers of Intrinsic Microporosity
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentChemical Engineering Program
dc.identifier.journalMacromolecules
dc.rights.embargodate2021-09-23
dc.eprint.versionPost-print
dc.contributor.institutionChemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
dc.contributor.institutionDWI—Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
kaust.personOgieglo, Wojciech
kaust.personGenduso, Giuseppe
kaust.personPinnau, Ingo
kaust.grant.numberBAS/1/1323-01-01
dc.date.accepted2020-09-08
refterms.dateFOA2020-09-28T06:18:40Z
dc.date.published-online2020-09-23
dc.date.published-print2020-10-27


Files in this item

Thumbnail
Name:
Macromolecules. IP.CTA-PIM1-PTMPS-thinfilm_manuscript_revised (1).pdf
Size:
1.138Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record