Show simple item record

dc.contributor.authorSmajic, Jasmin
dc.contributor.authorWee, Shianlin
dc.contributor.authorSimoes, Filipa R.Fernandes
dc.contributor.authorHedhili, Mohamed N.
dc.contributor.authorWehbe, Nimer
dc.contributor.authorAbou-Hamad, Edy
dc.contributor.authorDa Costa, Pedro M. F. J.
dc.date.accessioned2020-09-14T13:33:19Z
dc.date.available2020-09-14T13:33:19Z
dc.date.issued2020-06-15
dc.date.submitted2020-04-22
dc.identifier.citationSmajic, J., Wee, S., Simoes, F. R. F., Hedhili, M. N., Wehbe, N., Abou-Hamad, E., & Costa, P. M. F. J. (2020). Capacity Retention Analysis in Aluminum-Sulfur Batteries. ACS Applied Energy Materials, 3(7), 6805–6814. doi:10.1021/acsaem.0c00921
dc.identifier.issn2574-0962
dc.identifier.doi10.1021/acsaem.0c00921
dc.identifier.urihttp://hdl.handle.net/10754/665141
dc.description.abstractThe electrochemical performance of aluminum-sulfur batteries is beset by poor stability and sluggish charge-storage properties. To address these issues, carbon allotropes have been used as electrode fillers, but successful outcomes remain inexplicably elusive. Here, a composite of sulfur and small-diameter single-walled carbon nanotubes was studied as a cathode for AlCl3:[EMIM]-based aluminum batteries. The presence of carbon nanotubes, while enabling a high capacity (1024 mAh g-1) with slower decay and reducing the electrolyte-to-sulfur ratio, is insufficient to fully stabilize the cell's performance. In fact, the main obstacle is in the interaction between sulfur and chloroaluminate ions. As we show, there is a gradual buildup of insoluble and poorly conductive discharge products that inhibit the diffusion of electroactive ions and, ultimately, cause capacity decay. Overall, this work sheds light on the carbon-sulfur-electrolyte interactions and their role on the underlying charge-storage mechanism of aluminum-sulfur batteries.
dc.description.sponsorshipThis work was funded by KAUST (BAS/1/1346-01-01). The authors thank the KAUST Core Labs for technical assistance.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsaem.0c00921
dc.rightsThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
dc.titleCapacity Retention Analysis in Aluminum-Sulfur Batteries
dc.typeArticle
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentMaterial Science and Engineering
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentNMR
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSurface Science
dc.identifier.journalACS Applied Energy Materials
dc.eprint.versionPublisher's Version/PDF
dc.identifier.volume3
dc.identifier.issue7
dc.identifier.pages6805-6814
kaust.personSmajic, Jasmin
kaust.personWee, Shianlin
kaust.personSimoes, Filipa R.Fernandes
kaust.personHedhili, Mohamed N.
kaust.personWehbe, Nimer
kaust.personAbou-Hamad, Edy
kaust.personDa Costa, Pedro M. F. J.
kaust.grant.number(BAS/1/1346-01-01
dc.date.accepted2020-06-15
dc.identifier.eid2-s2.0-85090380881
refterms.dateFOA2020-09-14T13:35:00Z
kaust.acknowledged.supportUnitCore Labs
kaust.acknowledged.supportUnitKAUST Core Lab
dc.date.published-online2020-06-15
dc.date.published-print2020-07-27


Files in this item

Thumbnail
Name:
capacity retention.pdf
Size:
3.581Mb
Format:
PDF
Description:
published version

This item appears in the following Collection(s)

Show simple item record