Monte-Carlo based laminar flame speed correlation for gasoline

Embargo End Date
2022-08-14

Type
Article

Authors
Harbi, Ahmed A.
Farooq, Aamir

KAUST Department
Chemical Kinetics & Laser Sensors Laboratory
Clean Combustion Research Center
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division

Online Publication Date
2020-09-04

Print Publication Date
2020-12

Date
2020-09-04

Submitted Date
2020-05-06

Abstract
Laminar flame speed and autoignition properties of gasoline play key role in the overall performance of spark-ignition and modern engines. Since gasoline is a complex fuel containing hundreds of species, it is not feasible to model all components present in gasoline. Researchers tend to employ surrogates, comprising of few components, that mimic targeted physical and chemical properties of gasoline. Detailed kinetic models of the surrogates can still be prohibitively large for CFD simulations and/or fuel-screening studies. For fuel-engine optimization efforts, it is highly desirable to have simple methods which can be used to accurately predict autoignition and laminar flame speed of real fuels. In this work, a laminar flame speed correlation is proposed for typical gasolines. This correlation is based on Monte-Carlo simulations of randomly generated mixtures comprising of 21 gasoline-relevant molecules. Laminar flame speed of each molecule is numerically computed over a wide range of thermodynamic conditions using detailed chemical kinetic models, and flame speed of each mixture is estimated with a suitable mixing rule. The proposed correlation is validated against experimentally-measured laminar flame speeds of various gasoline fuels.

Citation
Harbi, A., & Farooq, A. (2020). Monte-Carlo based laminar flame speed correlation for gasoline. Combustion and Flame, 222, 61–69. doi:10.1016/j.combustflame.2020.08.023

Acknowledgements
Research reported in this work was funded by the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST).

Publisher
Elsevier BV

Journal
Combustion and Flame

DOI
10.1016/j.combustflame.2020.08.023

Additional Links
https://linkinghub.elsevier.com/retrieve/pii/S0010218020303461

Permanent link to this record