Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism
Type
ArticleAuthors
Lopatin, Sergei
Aljarb, Areej

Roddatis, Vladimir

Meyer, Tobias

Wan, Yi

Fu, Jui-Han
Hedhili, Mohamed N.

Han, Yimo

Li, Lain-Jong

Tung, Vincent

KAUST Department
Electron MicroscopyMaterial Science and Engineering Program
Physical Science and Engineering (PSE) Division
Material Science and Engineering
Surface Science
KAUST Grant Number
OSR-2018-CARF/CCF-3079Date
2020-09-09Online Publication Date
2020-09-09Print Publication Date
2020-09Submitted Date
2020-04-05Permanent link to this record
http://hdl.handle.net/10754/665075
Metadata
Show full item recordAbstract
High-resolution scanning transmission electron microscopy (HR-STEM) with spherical aberration correction enables researchers to peer into two-dimensional (2D) materials and correlate the material properties with those of single atoms. The maximum intensity of corrected electron beam is confined in the area having sub-angstrom size. Meanwhile, the residual threefold astigmatism of the electron probe implies a triangular shape distribution of the intensity, whereas its tails overlap and thus interact with several atomic species simultaneously. The result is the resonant modulation of contrast that interferes the determination of phase transition of 2D materials. Here, we theoretically reveal and experimentally determine the origin of resonant modulation of contrast and its unintended impact on violating the power-law dependence of contrast on coordination modes between transition metal and chalcogenide atoms. The finding illuminates the correlation between atomic contrast, spatially inequivalent chalcogenide orientation, and residual threefold astigmatism on determining the atomic structure of emerging 2D materials.Citation
Lopatin, S., Aljarb, A., Roddatis, V., Meyer, T., Wan, Y., Fu, J.-H., … Tung, V. (2020). Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. Science Advances, 6(37), eabb8431. doi:10.1126/sciadv.abb8431Sponsors
V.T., A.A., and J.-H.F. are indebted to the support from the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2018-CARF/CCF-3079. V.T. acknowledges the support from User Proposals (nos. 5067 and 5424) at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The financial support from the Deutsche Forschungsgemeinschaft (DFG) via the CRC 1073 project Z02 and B02 is acknowledged.Journal
Science AdvancesPubMed ID
32917685Additional Links
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.abb8431ae974a485f413a2113503eed53cd6c53
10.1126/sciadv.abb8431
Scopus Count
Except where otherwise noted, this item's license is described as Exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed
under a Creative Commons Attribution NonCommercial License 4.0.
Related articles
- Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.
- Authors: Shibata N, Findlay SD, Matsumoto T, Kohno Y, Seki T, Sánchez-Santolino G, Ikuhara Y
- Issue date: 2017 Jul 18
- Progress and prospects of aberration-corrected STEM for functional materials.
- Authors: Wu H, Zhao X, Song D, Tian F, Wang J, Loh KP, Pennycook SJ
- Issue date: 2018 Nov
- Interfacial atomic structure analysis at sub-angstrom resolution using aberration-corrected STEM.
- Authors: Hsiao CN, Kuo SY, Lai FI, Chen WC
- Issue date: 2014
- Electron beam triggered single-atom dynamics in two-dimensional materials.
- Authors: Zhao X, Loh KP, Pennycook SJ
- Issue date: 2020 Oct 2
- Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction.
- Authors: Lentzen M
- Issue date: 2006 Jun