A Polymorphic Azobenzene Cage for Energy Efficient and Highly Selective p-Xylene Separation.
Name:
A polymorphic.pdf
Size:
2.082Mb
Format:
PDF
Description:
Accepted Article
Embargo End Date:
2021-09-03
Type
ArticleAuthors
Moosa, Basem
Alimi, Lukman Olawale
Shkurenko, Aleksander

Fakim, Aliyah
Bhatt, Prashant
Zhang, Gengwu
Eddaoudi, Mohamed

Khashab, Niveen M.

KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Science
Chemical Science Program
Functional Materials Design, Discovery and Development (FMD3)
Physical Science and Engineering (PSE) Division
Smart Hybrid Materials (SHMs) lab
Date
2020-10-02Online Publication Date
2020-10-02Print Publication Date
2020-11-23Embargo End Date
2021-09-03Submitted Date
2020-05-31Permanent link to this record
http://hdl.handle.net/10754/665034
Metadata
Show full item recordAbstract
Developing the competency of molecular sorbents for energy-saving applications, such as C8 separations, requires efficient, stable, scalable and easily recyclable materials that can readily transition to commercial implementation. Here, we report an azobenzene-based cage for the selective separation of p -xylene isomer across a range of C8 isomers in both vapor and liquid states with selectivity that is higher than the reported all-organic sorbents. Interestingly, the crystal structure shows non-porous cages that are separated by p- xylene molecules through selective CH… p interactions between the azo bonds and the methyl hydrogens of the xylene molecules. This cage is stable in solution and can be regenerated directly under vacuum to be used in multiple cycles. We envisage that this work will promote the investigation of the azo bond as well as guest induced crystal to crystal phase transition in non-porous organic solids for pivotal energy intensive separations.Citation
Moosa, B., Alimi, L., Shkurenko, A., Fakim, A., Bhatt, P., Zhang, G., … Khashab, N. (2020). A Polymorphic Azobenzene Cage for Energy Efficient and Highly Selective p-Xylene Separation. Angewandte Chemie International Edition. doi:10.1002/anie.202007782Publisher
WileyPubMed ID
32876969Additional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202007782Relations
Is Supplemented By:- [Dataset]
Moosa, Basem, Alimi, Lukman O., Shkurenko, Aleksander, Fakim, Aliyah, Bhatt, Prashant M., Zhang, Gengwu, Eddaoudi, Mohamed, & Khashab, Niveen M. (2020). CCDC 2005983: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC25BD42. DOI: 10.5517/ccdc.csd.cc25bd42 HANDLE: 10754/666369 - [Dataset]
Moosa, Basem, Alimi, Lukman O., Shkurenko, Aleksander, Fakim, Aliyah, Bhatt, Prashant M., Zhang, Gengwu, Eddaoudi, Mohamed, & Khashab, Niveen M. (2020). CCDC 2005984: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC25BD53. DOI: 10.5517/ccdc.csd.cc25bd53 HANDLE: 10754/666370
ae974a485f413a2113503eed53cd6c53
10.1002/anie.202007782
Scopus Count
Related articles
- Benchmark selectivity <i>p</i>-xylene separation by a non-porous molecular solid through liquid or vapor extraction.
- Authors: Sun N, Wang SQ, Zou R, Cui WG, Zhang A, Zhang T, Li Q, Zhuang ZZ, Zhang YH, Xu J, Zaworotko MJ, Bu XH
- Issue date: 2019 Oct 14
- Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations.
- Authors: Zhang G, Hua B, Dey A, Ghosh M, Moosa BA, Khashab NM
- Issue date: 2021 Jan 5
- A homochiral porous organic cage with large cavity and pore windows for the efficient gas chromatography separation of enantiomers and positional isomers.
- Authors: Zhang JH, Xie SM, Wang BJ, He PG, Yuan LM
- Issue date: 2018 Mar
- Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal-Organic Frameworks.
- Authors: Gonzalez MI, Kapelewski MT, Bloch ED, Milner PJ, Reed DA, Hudson MR, Mason JA, Barin G, Brown CM, Long JR
- Issue date: 2018 Mar 7
- Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites.
- Authors: Cui X, Niu Z, Shan C, Yang L, Hu J, Wang Q, Lan PC, Li Y, Wojtas L, Ma S, Xing H
- Issue date: 2020 Oct 28