• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The Umklapp Scattering and Spin Mixing Conductance in Collinear Antiferromagnets

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nisreen Alshehri - Thesis - Final Draft.pdf
    Size:
    5.489Mb
    Format:
    PDF
    Description:
    Nisreen Alshehri - Thesis - Final Draft
    Download
    Type
    Thesis
    Authors
    Alshehri, Nisreen cc
    Advisors
    Manchon, Aurelien cc
    Committee members
    Schwingenschlögl, Udo cc
    Wu, Ying cc
    Program
    Material Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2020-08-31
    Embargo End Date
    2021-09-07
    Permanent link to this record
    http://hdl.handle.net/10754/664989
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2021-09-07.
    Abstract
    Antiferromagnetic spintronics is a new promising field in applied magnetism. Antiferromagnetic materials display a staggered arrangement of magnetic moments so that they exhibit no overall magnetization while possessing a local magnetic order. Unlike ferromagnets that possess a homogeneous magnetic order, the spin-dependent phenomena occur locally upon the interaction between the itinerant electron and the localized magnetic moments. In fact, unique spin transport properties such as anisotropic magnetoresistance, anomalous Hall effect, magnetooptical Kerr effect, spin transfer torque and spin pumping have been predicted and observed, proving that antiferromagnetic materials stand out as promising candidates for spin information control and manipulation, and could potentially replace ferromagnets as the active part of spintronic devices. As a matter of fact, owing to their vanishing net magnetization, they produce no parasite stray fields, hence, they are mostly insensitive to external magnetic fields perturbations and displaying ultrafast magnetic dynamics. When a spin current is sent into an antiferromagnet, it experiences spin-dependent scattering, a mechanism that controls the spin transfer torque as well as the spin transmission across the antiferromagnet. The fully compensated antiferromagnetic interfaces are full of intriguing properties. For example, itinerant electron impinging on such an interface experiences a spin-flip associated with the sub-lattices interchange. This process, associated with Umklapp scattering, gives rise to a non-vanishing spin mixing conductance that governs spin transfer torque, spin pumping, and spin transmission. The thesis explores the mechanism of Umklapp scattering at a staggered antiferromagnetic interface and its associated spin mixing conductance. In this project we consider two systems of bilayer and trilayer antiferromagnetic (L-type, G-type) heterostructures. We first study the scattering coeffcients at the interface implemented by adopting the tight-binding model and proper boundary conditions. Then, in the trilayer case, we study the spin mixing conductance and the dephasing length associated with the transition from ferromagnetic order to antiferromagnetic order.
    Citation
    Alshehri, N. (2020). The Umklapp Scattering and Spin Mixing Conductance in Collinear Antiferromagnets. KAUST Research Repository. https://doi.org/10.25781/KAUST-C6XZV
    DOI
    10.25781/KAUST-C6XZV
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-C6XZV
    Scopus Count
    Collections
    MS Theses; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.