Show simple item record

dc.contributor.authorLuo, Jessica Y.
dc.contributor.authorCondon, Robert H.
dc.contributor.authorStock, Charles A.
dc.contributor.authorDuarte, Carlos M.
dc.contributor.authorLucas, Cathy H.
dc.contributor.authorPitt, Kylie A.
dc.contributor.authorCowen, Robert K.
dc.date.accessioned2020-09-06T08:32:58Z
dc.date.available2020-09-06T08:32:58Z
dc.date.issued2020-09-18
dc.date.submitted2020-06-13
dc.identifier.citationLuo, J. Y., Condon, R. H., Stock, C. A., Duarte, C. M., Lucas, C. H., Pitt, K. A., & Cowen, R. K. (2020). Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study. Global Biogeochemical Cycles. doi:10.1029/2020gb006704
dc.identifier.issn0886-6236
dc.identifier.issn1944-9224
dc.identifier.doi10.1029/2020gb006704
dc.identifier.urihttp://hdl.handle.net/10754/664936
dc.description.abstractAmong marine organisms, gelatinous zooplankton (GZ; cnidarians, ctenophores, and pelagic tunicates) are unique in their energetic efficiency, as the gelatinous body plan allows them to process and assimilate high proportions of oceanic carbon. Upon death, their body shape facilitates rapid sinking through the water column, resulting in carcass depositions on the seafloor (“jelly-falls”). GZ are thought to be important components of the biological pump, but their overall contribution to global carbon fluxes remains unknown. Using a data-driven, 3-dimensional, carbon-cycle model resolved to a 1° global grid, with a Monte Carlo uncertainty analysis, we estimate that GZ consumed 7.9-13 Pg C y-1 in phytoplankton and zooplankton, resulting in a net production of 3.9-5.8 Pg C y-1 in the upper ocean (top 200 m), with the largest fluxes from pelagic tunicates. Non-predation mortality (carcasses) comprised 25% of GZ-production, and combined with the much greater fecal matter flux, total GZ particulate organic carbon (POC) export at 100 m was 1.6-5.2 Pg C y-1, equivalent to 32-40% of the global POC export. The fast sinking GZ export resulted in a high transfer efficiency (Teff) of 38-62% to 1000 m, and 25-40% to the seafloor. Finally, jelly-falls at depths > 50 m are likely unaccounted for in current POC flux estimates and could increase benthic POC flux by 8-35%. The significant magnitude of and distinct sinking properties of GZ fluxes support a critical yet under-recognized role of GZ carcasses and fecal matter to the biological pump and air-sea carbon balance.
dc.description.sponsorshipMany thanks to Su Sponaugle, Kelly Robinson, Jim Ruzicka, Martin Lilley, and Matt Long for helpful discussions. We also thank John Dunne and two anonymous reviewers for comments that improved previous versions of this manuscript. JYL acknowledges support from NSF (OCE Grant 1419987 to RKC and S. Sponaugle), and the NOAA Marine Ecosystem Tipping Points initiative. We also acknowledge support from Biological and Chemical Oceanography Data Management Office (BCO-DMO) for hosting the JeDI dataset.
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1029/2020GB006704
dc.rightsArchived with thanks to Global Biogeochemical Cycles
dc.titleGelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentMarine Science Program
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.identifier.journalGlobal Biogeochemical Cycles
dc.rights.embargodate2021-02-27
dc.eprint.versionPost-print
dc.contributor.institutionNOAA Geophysical Fluid Dynamics LaboratoryPrinceton University Forrestal Campus Princeton NJ USA
dc.contributor.institutionYoung Scientist Academy Wilmington NC USA
dc.contributor.institutionNational Oceanography Centre SouthamptonUniversity of Southampton Waterfront Campus Southampton UK
dc.contributor.institutionAustralian Rivers Institute and Griffith School of EnvironmentGriffith University Gold Coast Australia
dc.contributor.institutionHatfield Marine Science CenterOregon State University Newport OR USA
kaust.personDuarte, Carlos M.
dc.date.accepted2020-08-18
dc.relation.issupplementedbyDOI:10.5281/zenodo.3891703
dc.relation.issupplementedbygithub:jessluo/gz_biogeochem_pub
refterms.dateFOA2020-09-06T08:34:11Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Dataset]</i> <br/> Luo, J. Y., Condon, R. H., Stock, C. A., Duarte, C. M., Lucas, C. H., Pitt, K. A., &amp; Cowen, R. K. (2020). Dataset for Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study (Version 1.0) [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.3891703. DOI: <a href="https://doi.org/10.5281/zenodo.3891703" >10.5281/zenodo.3891703</a> Handle: <a href="http://hdl.handle.net/10754/665139" >10754/665139</a></a></li><li><i>[Software]</i> <br/> Title: jessluo/gz_biogeochem_pub: Offline model to assess role of gelatinous zooplankton in global carbon cycle. Publication Date: 2020-08-21. github: <a href="https://github.com/jessluo/gz_biogeochem_pub" >jessluo/gz_biogeochem_pub</a> Handle: <a href="http://hdl.handle.net/10754/667961" >10754/667961</a></a></li></ul>
dc.date.published-online2020-09-18
dc.date.published-print2020-09


Files in this item

Thumbnail
Name:
2020GB006704.pdf
Size:
1.988Mb
Format:
PDF
Description:
Accepted Article

This item appears in the following Collection(s)

Show simple item record