Field Demonstrations of Wide-beam Optical Communications through Water–Air Interface

Abstract
The connectivity of undersea sensors and airborne nodes across the water–air interface has been long sought. This study designs a free-space wireless laser communications system that yields a high net data rate of 850 Mbit/s when perfectly aligned. This system can also be used for an extended coverage of 1963 cm² at the receiver while sustaining a net data rate of 9 Mbit/s over 10 m. The utility of this system was verified for direct communications across the water–air interface in a canal of the Red Sea based on a pre-aligned link as well as a diving pool under a mobile signal-searching mode. The canal deployment measured a real-time data rate of 87 Mbit/s when pre-aligned in turbid water over 50 min, which confirms the system robustness in harsh water environments. In the pool deployment, a drone configured with a photodetector flew over the surface of the water and recorded the underwater signals without a structure-assisted alignment. Using a four-quadrature amplitude-modulated orthogonal frequency-division multiplexing (4-QAM-OFDM) modulation scheme provided a net data rate of 44 Mbit/s over a 2.3-m underwater and 3.5-m air link. The results validated the link stability and mitigated problems that arise from misalignment and mobility in harsh environments, which paves the way for future field applications.

Citation
Sun, X., Kong, M., Alkhazragi, O., Telegenov, K., Ouhssain, M., Sait, M., … Ooi, B. S. (2020). Field Demonstrations of Wide-beam Optical Communications through Water–Air Interface. IEEE Access, 1–1. doi:10.1109/access.2020.3020878

Acknowledgements
This work was supported by the King Abdullah University of Science and Technology (KAUST), BAS/1/1614-01-01, KCR/1/2081-01-01, KCR/1/4114-01- 01, GEN/1/6607-01-01, and FCC/1/1973-27-01. The authors also thank Mr. Nabeel M. Moamenah and the team at Residential & Facilities Operations, KAUST, for providing support for the Red Sea canal deployment.

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Journal
IEEE Access

DOI
10.1109/ACCESS.2020.3020878

Additional Links
https://ieeexplore.ieee.org/document/9184014/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9184014

Permanent link to this record