• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    BAN_Survey.pdf
    Size:
    7.315Mb
    Format:
    PDF
    Description:
    Preprint
    Download
    Type
    Preprint
    Authors
    Celik, Abdulkadir cc
    Salama, Khaled N. cc
    Eltawil, Ahmed cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Sensors Lab
    Date
    2020
    Submitted Date
    2020-09-01
    Permanent link to this record
    http://hdl.handle.net/10754/664925
    
    Metadata
    Show full item record
    Abstract
    The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today’s public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.
    Citation
    Celik, A., Salama, K. N., & Eltawil, A. (2020). The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. doi:10.36227/techrxiv.12912752
    Sponsors
    We thank Dr. Aslihan Kartci for her valuable discussions on Section V-C and help in preparing Table VIII, Table IX, and Figure 5. We also thank Ms. Kenan S. Sindi for her participation in preparing Table III and Table IV.
    Publisher
    Submitted to IEEE
    Journal
    Submitted to IEEE Communications Surveys and Tutorials
    DOI
    10.36227/techrxiv.12912752
    10.36227/techrxiv.12912752.v1
    10.36227/techrxiv.12912752.v2
    ae974a485f413a2113503eed53cd6c53
    10.36227/techrxiv.12912752
    Scopus Count
    Collections
    Preprints; Electrical Engineering Program; Sensors Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.