• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Intelligent Reflecting Surface Assisted MISO Downlink: Channel Estimation and Asymptotic Analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    679.2Kb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Al-Nahhas, Bayan
    Nadeem, Qurrat-Ul-Ain
    Chaaban, Anas
    KAUST Grant Number
    CRG
    Date
    2020-08-18
    Permanent link to this record
    http://hdl.handle.net/10754/664814
    
    Metadata
    Show full item record
    Abstract
    This work makes the preliminary contribution of studying the asymptotic performance of a multi-user intelligent reflecting surface (IRS) assisted-multiple-input single-output (MISO) downlink system under imperfect CSI. We first extend the existing least squares (LS) ON/OFF channel estimation protocol to a multi-user system, where we derive minimum mean squared error (MMSE) estimates of all IRS-assisted channels over multiple sub-phases. We also consider a low-complexity direct estimation (DE) scheme, where the BS obtains the MMSE estimate of the overall channel in a single sub-phase. Under both protocols, the BS implements maximum ratio transmission (MRT) precoding while the IRS design is studied in the large system limit, where we derive deterministic equivalents of the signal-to-interference-plus-noise ratio (SINR) and the sum-rate. The derived asymptotic expressions, which depend only on channel statistics, reveal that under Rayleigh fading IRS-to-users channels, the IRS phase-shift values do not play a significant role in improving the sum-rate but the IRS still provides an array gain. Simulation results confirm the accuracy of the derived deterministic equivalents and show that under Rayleigh fading, the IRS gains are more significant in noise-limited scenarios. We also conclude that the DE of the overall channel yields better performance when considering large systems.
    Sponsors
    This work is supported by the King Abdullah University of Science and Technology (KAUST) under Award No. OSR-2018-CRG7-3734.
    Publisher
    arXiv
    arXiv
    2008.08160
    Additional Links
    https://arxiv.org/pdf/2008.08160
    Collections
    Preprints

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.