Show simple item record

dc.contributor.authorCiottoli, Pietro Paolo
dc.contributor.authorPetrocchi, Andrea
dc.contributor.authorAngelilli, Lorenzo
dc.contributor.authorHernandez Perez, Francisco
dc.contributor.authorMalpica Galassi, Riccardo
dc.contributor.authorPicano, Francesco
dc.contributor.authorValorani, Mauro
dc.contributor.authorIm, Hong G.
dc.date.accessioned2020-08-24T12:12:23Z
dc.date.available2020-08-24T12:12:23Z
dc.date.issued2020-08-17
dc.identifier.citationCiottoli, P. P., Petrocchi, A., Angelilli, L., Hernandez Perez, F. E., Malpica Galassi, R., Picano, F., … Im, H. G. (2020). Uncertainty quantification analysis of RANS of spray jets. AIAA Propulsion and Energy 2020 Forum. doi:10.2514/6.2020-3882
dc.identifier.isbn9781624106026
dc.identifier.doi10.2514/6.2020-3882
dc.identifier.urihttp://hdl.handle.net/10754/664796
dc.description.abstractParametric uncertainty is propagated through Reynolds-averaged Navier-Stokes (RANS) computations of a prototypical acetone/air aerosol stream flowing in a dry air environment. Two parameters are considered as uncertain: the inflow velocity dissipation and a coefficient that blends the discrete random walk and the gradient-based dispersion models. A Bayesian setting is employed to represent the degree of belief about the parameters of interest in terms of probability theory, such that uncertainty is described with probability density functions. Random variables are represented by means of polynomial chaos expansions. The sensitivity of mean axial velocity and mean vapor mass fraction to the uncertain parameters is discussed.
dc.description.sponsorshipThe authors acknowledge the support of the Italian Ministry of University and Research (MIUR) and King Abdullah University of Science and Technology OSR-2019-CCF-1975-35 Subaward Agreement. Computational resources were provided by the KAUST Supercomputing Laboratory (KSL).
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)
dc.relation.urlhttps://arc.aiaa.org/doi/10.2514/6.2020-3882
dc.rightsArchived with thanks to American Institute of Aeronautics and Astronautics
dc.titleUncertainty quantification analysis of RANS of spray jets
dc.typeConference Paper
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentComputational Reacting Flow Laboratory (CRFL)
dc.contributor.departmentMechanical Engineering
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.conference.dateAugust 24-28, 2020
dc.conference.locationVIRTUAL EVENT
dc.eprint.versionPost-print
dc.contributor.institutionUniversity of Rome
dc.contributor.institutionUniversity of Padua
kaust.personAngelilli, Lorenzo
kaust.personHernandez Perez, Francisco
kaust.personIm, Hong G.
kaust.grant.numberOSR-2019-CCF-1975-35
refterms.dateFOA2020-08-25T10:40:25Z
kaust.acknowledged.supportUnitCCF
kaust.acknowledged.supportUnitKAUST Supercomputing Laboratory (KSL)
kaust.acknowledged.supportUnitOSR
dc.date.published-online2020-08-17
dc.date.published-print2020-08-24


Files in this item

Thumbnail
Name:
EnergyPropulsion2020_Angelilli-2.pdf
Size:
834.6Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record