• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A Computational Analysis of Cell Fate Dynamics during Zebrafish Embryonic Development using Single Cell Transcriptomics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MS Thesis_Ali Balubaid_Final.pdf
    Size:
    4.532Mb
    Format:
    PDF
    Download
    View more filesView fewer files
    Type
    Thesis
    Authors
    Balubaid, Ali cc
    Advisors
    Tegner, Jesper cc
    Committee members
    Li, Mo cc
    Gao, Xin cc
    Program
    Bioengineering
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2020-07
    Permanent link to this record
    http://hdl.handle.net/10754/664790
    
    Metadata
    Show full item record
    Abstract
    Development and the associated cellular differentiation are some of the most fundamental processes in biology. Since the early conception of the Waddington landscape, with cells portrayed as rolling down a landscape, understanding these processes has been at the forefront of biology. Progress in tissue regeneration, organoid culture, and cellular reprogramming relies on our ability to unfold cellular decision making and its dynamics. In this thesis, we ask to what extent development follows such landscape. Secondly, we address whether cellular branching points are discrete events. Given the recent surge in single-cell genomics data, we can now address these fundamental questions. To this end, we analyzed two large-scale single-cell RNAseq time course datasets from vertebrate embryogenesis in zebrafish. From the Waddington analogy, we expect the cell-to-cell correlation to increase across development as cells specialize. Our analysis does not show a linear trend, but rather, that cell-to-cell variability is lowest during gastrulation. Interestingly, the two different datasets from two different laboratories display a qualitatively similar trend, providing internal consistency of our analysis. To uncover the branchpoint dynamics, we extended our analysis to include computations of gene-to-gene correlations. It has been shown, using PCR data, that the transition index, the ratio between cell-to-cell and gene-to-gene correlations, displays a peak during such branchpoints, suggesting discrete transitions. To this end, we tracked individual developmental trajectories, and characterized both correlations, enabling computation of the transition index. However, the cell-to-cell correlation and gene-to-gene correlation did not follow a generic inverse relationship, as previously suggested. No unique signal corresponding to the branchpoints could, thus, be detected. Therefore, our analysis does not support the view that branchpoints during vertebrate embryogenesis are discrete, well-defined transition events. In conclusion, this first large-scale single-cell based analysis of time-resolved developmental data does not support a downhill rolling ball notion where cells decide their fate at discrete transition points. The temporal organization of an undulating developmental landscape appears to be more complex than initially conceptualized by Waddington. Therefore, it is of paramount interest to extend this type of analysis to other systems and to develop techniques to compute such landscape in a data-driven manner.
    Citation
    Balubaid, A. (2020). A Computational Analysis of Cell Fate Dynamics during Zebrafish Embryonic Development using Single Cell Transcriptomics. KAUST Research Repository. https://doi.org/10.25781/KAUST-34QV6
    DOI
    10.25781/KAUST-34QV6
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-34QV6
    Scopus Count
    Collections
    Bioengineering Program; Biological and Environmental Sciences and Engineering (BESE) Division; Theses

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.