Show simple item record

dc.contributor.authorZhu, Peihao
dc.contributor.authorAbdal, Rameen
dc.contributor.authorQin, Yipeng
dc.contributor.authorWonka, Peter
dc.date.accessioned2020-08-19T13:12:31Z
dc.date.available2020-08-19T13:12:31Z
dc.date.issued2020-08-05
dc.identifier.citationZhu, P., Abdal, R., Qin, Y., & Wonka, P. (2020). SEAN: Image Synthesis With Semantic Region-Adaptive Normalization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr42600.2020.00515
dc.identifier.isbn978-1-7281-7169-2
dc.identifier.issn1063-6919
dc.identifier.doi10.1109/CVPR42600.2020.00515
dc.identifier.urihttp://hdl.handle.net/10754/664682
dc.description.abstractWe propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156510/
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156510/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9156510
dc.rightsArchived with thanks to IEEE
dc.titleSEAN: Image Synthesis With Semantic Region-Adaptive Normalization
dc.typeConference Paper
dc.contributor.departmentComputer Science
dc.contributor.departmentComputer Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division
dc.contributor.departmentVisual Computing Center (VCC)
dc.conference.date13-19 June 2020
dc.conference.name2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dc.conference.locationSeattle, WA, USA
dc.eprint.versionPost-print
dc.contributor.institutionMEGVII Technology
dc.identifier.arxivid1911.12861
kaust.personZhu, Peihao
kaust.personAbdal, Rameen
kaust.personWonka, Peter
refterms.dateFOA2020-08-20T07:47:22Z
dc.date.published-online2020-08-05
dc.date.published-print2020-06


Files in this item

Thumbnail
Name:
CVPR2020_SEAN.pdf
Size:
6.843Mb
Format:
PDF
Description:
Accepted manuscript
Thumbnail
Name:
supplemental_material.pdf
Size:
18.28Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record