• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Bortezomib-Encapsulated CuS/Carbon Dots Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    AAA_acsnano.0c05332.pdf
    Size:
    1.923Mb
    Format:
    PDF
    Description:
    Accepted Article
    Download
    Type
    Article
    Authors
    Yu, Ying
    Song, Meiyu
    Chen, Cailing cc
    Du, Yangyang
    Li, Chunguang
    Han, Yu cc
    Yan, Fei
    Shi, Zhan
    Feng, Shouhua
    KAUST Department
    Advanced Membranes and Porous Materials Research Center
    Chemical Science Program
    Nanostructured Functional Materials (NFM) laboratory
    Physical Science and Engineering (PSE) Division
    Date
    2020-08-11
    Online Publication Date
    2020-08-11
    Print Publication Date
    2020-08-25
    Embargo End Date
    2021-08-11
    Permanent link to this record
    http://hdl.handle.net/10754/664618
    
    Metadata
    Show full item record
    Abstract
    Photothermal therapy (PTT) is an emerging therapeutic strategy in the treatment of cancer; however, a critical challenge remains in the rational design of synergistic nanoparticles as potential photothermal transduction agent that can effectively enhance the therapeutic outcome of PTT for tumor ablation. Herein, we rationally designed, developed, and characterized hollow-structured CuS nanoparticles composited with carbon dots (CuSCD), which demonstrated excellent photothermal conversion efficiency under 808 nm laser irradiation with enhanced biocompatibility and reduced toxicity. Following coating macrophage membrane hybridized with T7 peptide on the surface of proteasome inhibitor loaded CuSCD, CuSCDB@MMT7 exhibited targeted specificity to cancer cells with the characteristics of immune escaping and enhanced transferrin receptor-mediated endocytosis. Predominantly, CuSCDB@MMT7-triggered PTT exhibited the accumulation of polyubiquitinated tumor suppressor protein that is heat stabilized under NIR induced hyperthermia, facilitating augmented tumor cell apoptosis and the attenuated metastasis. This study provides a proof-of-concept for the proteasome inhibitor-loaded CuS/carbon dots nanocomposites-PTT strategy, and highlights a promising therapeutic strategy for realizing enhanced therapeutic outcomes for effective clinical cancer therapy.
    Citation
    Yu, Y., Song, M., Chen, C., Du, Y., Li, C., Han, Y., … Feng, S. (2020). Bortezomib-Encapsulated CuS/Carbon Dots Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. ACS Nano. doi:10.1021/acsnano.0c05332
    Sponsors
    This work was supported by the National Natural Science Foundation of China (NSFC; nos. 81870117, 21771077, 21771084 and 21621001), the National Key Research and Development Program of China (no. 2016YFB0701100), the 111 project (no. B17020), and the Jilin Province Science and Technology Development Plan (20190201252JC). The authors also gratefully acknowledge the financial support by Program for JLU Science and Technology Innovative Research Team (JLUSTIRT).
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Nano
    DOI
    10.1021/acsnano.0c05332
    Additional Links
    https://pubs.acs.org/doi/10.1021/acsnano.0c05332
    ae974a485f413a2113503eed53cd6c53
    10.1021/acsnano.0c05332
    Scopus Count
    Collections
    Articles; Advanced Membranes and Porous Materials Research Center; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.