Show simple item record

dc.contributor.authorKnebel, Alexander
dc.contributor.authorBavykina, Anastasiya
dc.contributor.authorDatta, Shuvo Jit
dc.contributor.authorSundermann, Lion
dc.contributor.authorGarzon Tovar, Luis Carlos
dc.contributor.authorLebedev, Yury
dc.contributor.authorDurini, Sara
dc.contributor.authorAhmad, Rafia
dc.contributor.authorKozlov, Sergey
dc.contributor.authorShterk, Genrikh
dc.contributor.authorKarunakaran, Madhavan
dc.contributor.authorCarja, Ionela-Daniela
dc.contributor.authorSimic, Dino
dc.contributor.authorWeilert, Irina
dc.contributor.authorKlüppel, Manfred
dc.contributor.authorGiese, Ulrich
dc.contributor.authorCavallo, Luigi
dc.contributor.authorRueping, Magnus
dc.contributor.authorEddaoudi, Mohamed
dc.contributor.authorCaro, Jürgen
dc.contributor.authorGascon, Jorge
dc.date.accessioned2020-08-13T07:02:34Z
dc.date.available2020-08-13T07:02:34Z
dc.date.issued2020-08-10
dc.date.submitted2019-02-02
dc.identifier.citationKnebel, A., Bavykina, A., Datta, S. J., Sundermann, L., Garzon-Tovar, L., Lebedev, Y., … Gascon, J. (2020). Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nature Materials. doi:10.1038/s41563-020-0764-y
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.pmid32778813
dc.identifier.doi10.1038/s41563-020-0764-y
dc.identifier.urihttp://hdl.handle.net/10754/664580
dc.description.abstractThe combination of well-defined molecular cavities and chemical functionality makes crystalline porous solids attractive for a great number of technological applications, from catalysis to gas separation. However, in contrast to other widely applied synthetic solids such as polymers, the lack of processability of crystalline extended solids hampers their application. In this work, we demonstrate that metal-organic frameworks, a type of highly crystalline porous solid, can be made solution processable via outer surface functionalization using N-heterocyclic carbene ligands. Selective outer surface functionalization of relatively large nanoparticles (250 nm) of the well-known zeolitic imidazolate framework ZIF-67 allows for the stabilization of processable dispersions exhibiting permanent porosity. The resulting type III porous liquids can either be directly deployed as liquid adsorbents or be co-processed with state-of-the-art polymers to yield highly loaded mixed matrix membranes with excellent mechanical properties and an outstanding performance in the challenging separation of propylene from propane. We anticipate that this approach can be extended to other metal-organic frameworks and other applications.
dc.description.sponsorshipL.S., A.K. and J.C. acknowledge support by the Deutsche Forschungsgemeinschaft in the priority program SPP 1928 COORNETs (Coordination Networks: Building Block for Functional Systems), grant no. CA 147/20-1 (J.C.). R.A., S.K and L.C. acknowledge the Supercomputing Laboratory at KAUST for computational resources (Cray XC40, ShaheenII). We thank P. M. Bhatt for helping with the propylene/propane adsorption kinetic study. King Abdullah University of Science and Technology is acknowledged for financial support.
dc.publisherSpringer Science and Business Media LLC
dc.relation.urlhttp://www.nature.com/articles/s41563-020-0764-y
dc.rightsArchived with thanks to Nature Materials
dc.titleSolution processable metal–organic frameworks for mixed matrix membranes using porous liquids
dc.typeArticle
dc.contributor.departmentAdvanced Catalytic Materials, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentFunctional Materials Design, Discovery and Development, Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
dc.contributor.departmentChemical Science
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentChemical Engineering Program
dc.identifier.journalNature Materials
dc.rights.embargodate2021-02-10
dc.eprint.versionPost-print
dc.contributor.institutionInstitute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
dc.contributor.institutionDeutsches Institut für Kautschuktechnologie e. V.,Hannover, Germany.
dc.contributor.institutionSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
kaust.personKnebel, Alexander
kaust.personBavykina, Anastasiya
kaust.personDatta, Shuvo Jit
kaust.personGarzon Tovar, Luis Carlos
kaust.personLebedev, Yury
kaust.personDurini, Sara
kaust.personAhmad, Rafia
kaust.personKozlov, Sergey
kaust.personShterk, Genrikh
kaust.personKarunakaran, Madhavan
kaust.personCarja, Ionela-Daniela
kaust.personCavallo, Luigi
kaust.personRueping, Magnus
kaust.personEddaoudi, Mohamed
kaust.personGascon, Jorge
dc.date.accepted2020-07-10
refterms.dateFOA2020-08-13T13:07:30Z
kaust.acknowledged.supportUnitCray XC40
kaust.acknowledged.supportUnitShaheen
kaust.acknowledged.supportUnitSupercomputing Laboratory at KAUST


Files in this item

Thumbnail
Name:
Knebel et al_final_plain.pdf
Size:
497.0Kb
Format:
PDF
Description:
Accepted Article
Embargo End Date:
2021-02-10

This item appears in the following Collection(s)

Show simple item record