Dual solution of boundary-layer flow driven by variable plate and streaming-free velocity
Type
ArticleKAUST Department
Computational Transport Phenomena LabEarth Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2020-07-22Online Publication Date
2020-07-22Print Publication Date
2020-07Submitted Date
2020-01-23Permanent link to this record
http://hdl.handle.net/10754/664519
Metadata
Show full item recordAbstract
This article presents a numerical study to investigate boundary-layer heat transfer fluid associated with a moving flat body in cooperation of variable plate and streaming-free velocity along the boundary surface in the laminar flow. The thermal conductivity is supposed to vary linearly with temperature. Similarity transformations are applied to render the governing partial differential equations for mass, momentum and energy into a system of ordinary differential equations to reveal the possible existence of dual solutions. MATLAB package has been used to solve the boundary value problem numerically. We present the effects of various parameters such as velocity ratio, thermal conductivity and variable viscosity on velocity and temperature distribution. The analysis of the results concerning Skin friction and Nusselt number near the wall is also presented. It is focused on the detection and description of the dual solutions. The study reveals that the undertaken problem admits dual solutions in particular range of values of different physical parameters. It can be seen that for the first branch solution, the fluid velocity decreases near the sheet, but it increases far away from the sheet for velocity ratio parameter, whereas the opposite effect is induced for second branch solution. Skin friction coefficient and rate of heat transfer increase due to increase in thermal conductivity parameter.Citation
Ferdows, M., Alzahrani, F., & Sun, S. (2020). Dual solution of boundary-layer flow driven by variable plate and streaming-free velocity. Advances in Mechanical Engineering, 12(7), 168781402093084. doi:10.1177/1687814020930849Sponsors
The author(s) received no financial support for the research, authorship, and/or publication of this article.Publisher
SAGE PublicationsAdditional Links
http://journals.sagepub.com/doi/10.1177/1687814020930849https://journals.sagepub.com/doi/pdf/10.1177/1687814020930849
ae974a485f413a2113503eed53cd6c53
10.1177/1687814020930849
Scopus Count
Except where otherwise noted, this item's license is described as This article is distributed under the terms of the Creative Commons Attribution 4.0 License which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages.