Show simple item record

dc.contributor.authorAlRamadan, Abdullah
dc.contributor.authorHouidi, Moez Ben
dc.contributor.authorSotton, Julien
dc.contributor.authorBellenoue, Marc
dc.contributor.authorJohansson, Bengt
dc.contributor.authorSarathy, Mani
dc.date.accessioned2020-07-29T07:10:04Z
dc.date.available2020-07-29T07:10:04Z
dc.date.issued2020-07-28
dc.date.submitted2019-11-07
dc.identifier.citationAlRamadan, A. S., Houidi, M. B., Sotton, J., Bellenoue, M., Johansson, B., & Sarathy, S. M. (2020). Three-stage auto-ignition of n-heptane and methyl-cyclohexane mixtures at lean conditions in a flat piston rapid compression machine. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2020.05.038
dc.identifier.issn1540-7489
dc.identifier.doi10.1016/j.proci.2020.05.038
dc.identifier.urihttp://hdl.handle.net/10754/664482
dc.description.abstractOne approach to enhancing the thermal efficiency of combustion systems is to burn fuels at ultra-lean conditions (equivalence ratio below 0.5). It has been recently reported that the auto-ignition of some hydrocarbon fuels, under specific temperature, pressure, and mixture conditions, releases heat in three distinctive stages. The three auto-ignition stages can be divided as a first low-temperature auto-ignition stage with conventional low temperature, and a high-temperature stage separated into two sub-stages. This study presents ignition delay time measurements of n-heptane and methyl-cyclohexane (MCH) mixtures in a flat piston rapid compression machine (RCM) under ultra-lean conditions. It provides experimental evidence of three-stage auto-ignition. This phenomenon of delayed high-temperature heat release is seldom reported in the literature and this is the first time to be reported for these types of fuels. The experiments cover two binary n-heptane/MCH mixtures of 15/85 and 70/30 by volume, pressures of 11 bar and 16 bar, temperature range of 700 to 900 K, and equivalence ratio of 0.4. The RCM optical access was utilized for high-speed chemiluminescence imaging. Detailed chemical kinetic simulations in a homogenous batch reactor with variable volume were conducted to further interrogate the three-stage auto-ignition phenomenon. Chemiluminescence shows that three-stage auto-ignition occurs in the adiabatically compressed end-gas, which indicates that this phenomenon is chemically-driven and is not induced by a thermal stratification in the RCM experiments. The model predicts the features of three-stage auto-ignition, which were experimentally observed at temperatures approximately below 750 K. As expected, significant discrepancies are observed in the ignition delays of experiment and simulation in the negative temperature coefficient (NTC) region. The simulation of the n-heptane/MCH 70/30 mixture shows better agreement with experiments in the Positive Temperature Coefficient (PTC) region compared to the 15/85 mixture.
dc.description.sponsorshipThe experimental work was supported by the French research agency (Association Nationale de la Recherche et de la Technologie ANRT), Renault S.A., and PPRIME Institute during the Ph.D. thesis of M. Ben Houidi (CIFRE N:384/2010). The simulation work was supported by King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) with funds given to the Clean Combustion Research Center. We acknowledge funding from the KAUST Clean Fuels Consortium and its member companies.
dc.publisherElsevier BV
dc.relation.urlhttps://linkinghub.elsevier.com/retrieve/pii/S1540748920300869
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Proceedings of the Combustion Institute. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Proceedings of the Combustion Institute, [, , (2020-07-28)] DOI: 10.1016/j.proci.2020.05.038 . © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleThree-stage auto-ignition of n-heptane and methyl-cyclohexane mixtures at lean conditions in a flat piston rapid compression machine
dc.typeArticle
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentMechanical Engineering
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentClean Combustion Research Center, King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentChemical Engineering Program
dc.identifier.journalProceedings of the Combustion Institute
dc.rights.embargodate2022-07-28
dc.eprint.versionPost-print
dc.contributor.institutionISAE-ENSMA, Institut P prime, departement Fluide Thermique Combustion, BP 40109, Teleport2, 1 avenue Clement Ader, F86961 Futuroscope Chasseneuil-du-Poitou Cedex, France.
kaust.personAlRamadan, Abdullah
kaust.personHouidi, Moez Ben
kaust.personJohansson, Bengt
kaust.personSarathy, Mani
dc.date.accepted2020-05-29
refterms.dateFOA2020-07-29T07:28:49Z
kaust.acknowledged.supportUnitClean Combustion Research Center
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
Multiple Stage HR at RCM_Final-With-noHighlights.pdf
Size:
881.8Kb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-07-28

This item appears in the following Collection(s)

Show simple item record