Show simple item record

dc.contributor.authorRoth, Florian
dc.contributor.authorWild, Christian
dc.contributor.authorCarvalho, Susana
dc.contributor.authorRadecker, Nils
dc.contributor.authorVoolstra, Christian R.
dc.contributor.authorKürten, Benjamin
dc.contributor.authorAnlauf, Holger
dc.contributor.authorEl-Khaled, Yusuf C.
dc.contributor.authorCarolan, Ronan
dc.contributor.authorJones, Burton
dc.date.accessioned2020-07-27T07:19:47Z
dc.date.available2020-07-27T07:19:47Z
dc.date.issued2019
dc.identifier.citationRoth, F., Wild, C., Carvalho, S., Rädecker, N., Voolstra, C. R., Kurten, B., Anlauf, H., El-Khaled, Y. C., Carolan, R., Jones, B. H., & El-Khaled, Y. C. (2019). Data from: An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities (Version 1) [Data set]. Dryad. https://doi.org/10.5061/DRYAD.80C1RQ2
dc.identifier.doi10.5061/dryad.80c1rq2
dc.identifier.urihttp://hdl.handle.net/10754/664418
dc.description.abstractThe exchange of energy and nutrients are integral components of ecological functions of benthic shallow-water ecosystems and are directly dependent on in situ environmental conditions. Traditional laboratory experiments cannot account for the multidimensionality of interacting processes when assessing metabolic rates and biogeochemical fluxes of structurally complex benthic communities. Current in situ chamber systems are expensive, limited in their functionality, and the deployment is often restricted to planar habitats (e.g., sediments or seagrass meadows) only. 2. To overcome these constraints, we describe a protocol to build and use non-invasive, cost-effective, and easy to handle in situ incubation chambers that provide reproducible measurements of biogeochemical processes in simple and structurally complex benthic shallow-water communities. Photogrammetry tools account for the structural complexity of benthic communities, enabling to calculate accurate community fluxes. We tested the performance of the system in laboratory assays and various benthic habitats (i.e., algae growing on rock, coral assemblages, sediments, and seagrass meadows). In addition, we estimated community budgets of photosynthesis and respiration by corals, rock with algae, and carbonate sediments, which were subsequently compared to budgets extrapolated from conventional ex situ single-organism incubations. 3. The tests highlight the transparency (> 90% light transmission) of the chambers and minimal water exchange with the surrounding medium on most substrates. Linear dissolved oxygen fluxes in dependence to incubation time showed sufficient mixing of the water by circulation pumps and no organismal stress response. The comparison to single-organism incubations showed that ex situ measurements might overestimate community-wide net primary production and underestimate respiration and gross photosynthesis by 20 – 90%. 4. The proposed protocol overcomes the paucity of observational and manipulative studies that can be performed in in situ native habitats, thus producing widely-applicable and realistic assessments on the community level. Importantly, the tool provides a standardized approach to compare community functions across a wide range of benthic habitats. We identify multiple experimental strategies, including the manipulation of stressors/factors, and discuss how the method may be implemented in a variety of aquatic studies.
dc.publisherDryad
dc.subjectCommunity budgets
dc.subjectField-based measurements
dc.subjectRespiratory chambers
dc.subjectIncubations
dc.subject3D models
dc.subjectphotogrammetry
dc.titleData from: An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities
dc.typeDataset
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEngineering / Metrology
dc.contributor.departmentMarine Science Program
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.contributor.departmentReef Genomics Lab
dc.contributor.institutionUniversity of Bremen; Faculty of Biology and Chemistry; Marine Ecology Department; 28369 Bremen Germany
kaust.personRoth, Florian
kaust.personCarvalho, Susana
kaust.personRadecker, Nils
kaust.personVoolstra, Christian R.
kaust.personKürten, Benjamin
kaust.personAnlauf, Holger
kaust.personCarolan, Ronan
kaust.personJones, Burton
dc.relation.issupplementtoDOI:10.1111/2041-210x.13151
display.relations<b> Is Supplement To:</b><br/> <ul> <li><i>[Article]</i> <br/> Roth F, Wild C, Carvalho S, Rädecker N, Voolstra CR, et al. (2019) An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods in Ecology and Evolution. Available: http://dx.doi.org/10.1111/2041-210x.13151.. DOI: <a href="https://doi.org/10.1111/2041-210x.13151" >10.1111/2041-210x.13151</a> HANDLE: <a href="http://hdl.handle.net/10754/630939">10754/630939</a></li></ul>


This item appears in the following Collection(s)

Show simple item record